DEPARTMENT OF MATHEMATICS

MADRAS CHRISTIAN COLLEGE
 (AUTONOMOUS)

B.Sc. Mathematics

Curriculum \& Syllabi
(with effect from 2011-2012)
B.Sc. Mathematics Curriculum
with effect from 2011-12

Semester I							
Component		Course	Hours	Marks		Credits	
		CA		ESE			
Part I			Language I	4	50	50	3
Part II		English I	4	50	50	3	
Part III	Major	Algebra and Trigonometry	5	50	50	4	
		Calculus	5	50	50	4	
	Allied I	Physics I	6	50	50	5	
Part IV	(a)	Basic Tamil I / Advanced Tamil I / General Course I	4	50	50	2	
	(d)	Value Education	2	50	50	1	
Total			30			22	

Semester II							
Component		Course	Hours	Marks		Credits	
		CA		ESE			
Part I			Language II	4	50	50	3
Part II		English II	4	50	50	3	
Part III	Major	Differential Equations, Laplace Transforms and Fourier Series	5	50	50	4	
		Differential Geometry and Analytical Geometry of 3 Dimension	5	50	50	4	
	Allied I	Physics II	6	50	50	5	
Part IV	(a)	Basic Tamil II /Advanced Tamil II /General Course II	4	50	50	2	
	(d)	Value Education	2	50	50	1	
Total			30			22	

Semester III							
Component		Course	Hours	Marks		Credits	
		CA		ESE			
Part I			Language III	4	50	50	3
Part II		English III	4	50	50	3	
Part III	Major	Algebraic Structures	5	50	50	4	
		Multivariate Calculus and Theory of Numbers	5	50	50	4	
	Allied II	Discrete Mathematics I/Chemistry I/Comp. Science I	6	50	50	5	
Part IV	(b) Skillbased	Personality Development	2	25	-	-	
		Inter Disciplinary (Mathematical Physics)	4	50	50	3	
Total			30			22	

Semester IV							
Component		Course	Hours	Marks		Credits	
		CA		ESE			
Part I			Language IV	4	50	50	3
Part II		English IV	4	50	50	3	
Part III	Major	Linear Algebra	5	50	50	4	
		Advanced Calculus	5	50	50	4	
	Allied II	Discrete Mathematics II / Chemistry II / Computer Science II	6	50	50	5	
Part IV	(b) Skillbased	Personality Development	2	25	50	3	
	(c)	Environmental Studies	4	50	50	2	
Total			30			24	

Semester V							
Component		Course	Hours	Marks		Credits	
		CA		ESE			
Part III	Major		Real Analysis	7	50	50	5
		Mathematical Statistics	7	50	50	5	
		Numerical Methods	6	50	50	5	
		Elective: Programming in C / Mathematics of Finance	6	50	50	5	
Part IV	(b) Skillbased	General Elective (Space Science)	4	50	50	3	
Total			30			23	

Semester VI							
Component		Course	Hours	Marks		Credits	
		CA		ESE			
Part III	Major		Complex Analysis	6	50	50	5
		Mechanics	6	50	50	5	
		Linear Programming	5	50	50	4	
		Elective: Astronomy / Fluid Dynamics	5	50	50	4	
		Elective: Formal Languages \& Graph Theory / Mathematical Modeling	6	50	50	5	
Part IV	(b) Skillbased	Computer Training	2	-	-	3	
Total			30			26	

Component	Extension Activities	Hours	Marks		Credits
			ESE		
Part V	NCC/NSS/Sports/Scrub Soc./ Dept. Assn. Activities	-	-	-	1
Grand Total			140		

Department of Mathematics

Madras Christian College (Autonomous)

Allied and Non-Major Courses Offered by the Department

Allied I: (Offered to students of Physics and Chemistry Departments)
Semester I : Allied Mathematics I
Semester II : Allied Mathematics II (for Physics)
Allied Mathematics II (for Chemistry)
Allied II: (Offered to students of Mathematics Department)
Semester III : Discrete Mathematics I
Semester IV : Discrete Mathematics II
General Course: (Offered to students of Departments other than Mathematics)
Semester I : Basic Mathematics
Semester II : Basic Mathematics
Inter Disciplinary: (Offered to students of Mathematics, Physics and Chemistry Departments) Semester III : Mathematical Physics

General Elective: (Offered to students of all Departments)
Semester V : Space Science
Computer Training: (Offered to students of Mathematics Department)
Semester VI : Computer Training

Environmental Studies:

Semester IV : Environmental Studies (Common to students of all Departments)

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: I
Part III (a) - Major
Paper: 1
Course Title: Algebra and Trigonometry
Course Code: 111MT1M01
Credits: 4
Hours / Cycle: 5

Algebra

Unit I
Hours: 15
Theory of Equations: Introduction to polynomials - Roots of polynomial equations - Imaginary and irrational roots - Relation between roots and coefficients - Symmetric function of the roots.

Treatment and Content as in

Algebra, Volume - I, T.K. Manicavachagom Pillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan Publishers, 2004.

Chapter 6: Sections 1, 2, 9, 10, 11, 12

Unit II

Hours: 15
Transformation of equations - Reciprocal equations.

Treatment and Content as in

Algebra, Volume - I, T.K. Manicavachagom Pillay, T. Natarajan and K.S. Ganapathy, S.
Viswanathan Publishers, 2004.
Chapter 6: Sections $13-19,24,30$
Descartes' rule of signs - Solution by Newton's and Horner's method, Cardon's method of solution of a cubic polynomial equation with real coefficients.

Treatment and Content as in
Mathematics, Volume - I (First Edition), P. Kandasamy and K. Thilagavathy, S. Chand \& Co, 2004.

Chapter 1: Section 1

Unit III
Hours: 15
Series: Summation of series using Binomial, Exponential and Logarithmic series and approximations.

Treatment and Content as in

Algebra, Volume - I , T.K. Manicavachagom Pillay, T. Natarajan and K.S. Ganapathy, S.
Viswanathan Publishers, 2004.
Chapter 3: Section 10, Chapter 4: Sections 1, 3, 6, 7, 9

Trigonometry

Unit IV

Expansion of $\cos n x, \sin n x, \tan n x, \cos ^{n} x, \sin ^{n} x-$ Expansion of $\sin x, \cos x, \tan x$ in terms of $x-$ Hyperbolic functions

Chapter 3: Sections 1, 2, 3, 4, 5, Chapter 4: Sections 1, 2

Unit V

Hours: 15
Logarithms of complex quantities - Sums of sines and cosines of n angles which are in Arithmetic Progression - Summation of trigonometric series using complex quantities.

Chapter 5: Section 5, Chapter 6: Sections 2, 3

Treatment and Content as in (For Units IV and V)

Trigonometry, S. Narayanan and T.K. Manicavachagom Pillay, S.Viswanathan Publishers, 2010.

References

1. Algebra, Analytical Geometry and Trigonometry - I Year - Paper I, by P. R. Vittal and V. Malini, Margham Publications, Chennai, 2001.
2. Trigonometry by Hari Kishan, Atlantic, New Delhi, 2005.

Madras Christian College

Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: I
Part III (a) - Major
Paper: II
Course Title: Calculus
Course Code: 111MT1M02
Credits: 4
Hours / Cycle: 5

Differential Calculus

Unit I
Hours: 15
Introduction to differentiation - Successive differentiation $-\mathrm{n}^{\text {th }}$ derivative - Leibnitz formula for nth derivative of a product - Partial differentiation - total differential Coefficient- Homogeneous functions - Euler's theorem.
Chapter 3: Sections 1.1-1.6, 2.1, 2.2, Chapter 8: Sections 1.1 - 1.6
Unit II
Hours: 13
Maxima and minima of functions of 2 variables - Lagrange's method of undetermined multipliers simple problems.
Chapter 8: Sections 4.1, 5

Treatment and content as in (For Units I and II)

Calculus, Vol. I, S. Narayanan and T K Manicavachagom Pillay, S. Viswanathan Printers and Publishers Pvt. Ltd., 2010.

Integral Calculus

Unit III
Hours: 17
Introduction to integration - Methods of integration - Integration by parts - Bernoulli's formula.
Chapter 1: Sections 5, 6.1 - 6.6, 7.1-7.5, 8, 9, 10, 12, 15.1

Unit IV

Hours: 15
Properties of definite integrals - reduction formulae for standard integrals.
Chapter 1: Sections 11, 13.1 -13.10, 14

Geometrical Applications of Integration

Unit V
Hours: 15
Areas in polar coordinates - Length of the curve (Cartesian and polar coordinates) - Area of surface of revolution (Cartesian and polar coordinates).
Chapter 2: Sections 1.4, 4.1, 4.2, 5
Treatment and content as in (For Units III, IV and V)
Calculus Vol. II, S. Narayanan and T K Manicavachagom Pillay, S. Viswanathan Printers and Publishers Pvt. Ltd., 2010.

References

1. Mathematics, Volume 1, P. Kandasamy and Thilagavathy, S. Chand, New Delhi, 2004.
2. Calculus, Thomas and Finney, Pearson Education, $9^{\text {th }}$ Edition, 2006.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: II
Part III (a) - Major
Paper: III
Course Title: Differential Equations, Laplace Transforms and Fourier Series
Course Code: 111MT2M01
Credits: $\mathbf{4}$
Hours / Cycle: 5

Unit I
Hours: 12
Ordinary Differential Equations: Introduction to ordinary differential equations - First order but of higher degree equations - solvable for p, solvable for x, solvable for y - Clairaut's form - simple problems. Second order equation with constant coefficient with particular integrals for $e^{a x} x^{m}, e^{a x} \sin$ $m x, e^{a x} \cos m x$.
Chapter 1: Sections 5.1 - 5.4, 6; Chapter 2: Sections 1, 2, 3, 4

Unit II

Hours: 12
Second order differential equation with variable coefficients $a x^{2} d^{2} y / d x^{2}+b x d y / d x+c y=g(x)-$ method of variation of parameters.
Chapter 2: Sections 8, 10
Unit III
Hours: 18
Laplace Transforms: Introduction - Laplace transforms - inverse transform -Application of Laplace to solution of first and second order linear differential equation with constant coefficients.
Chapter 5: Sections 1-8
Unit IV
Hours: 15
Partial Differential Equations: Introduction to partial differential equations (PDE) - Formation of PDE by eliminating arbitrary constants and arbitrary functions - complete integral - singular integral - general integral - Standard types $f(p, q)=0 ; f(x, p, q)=0 ; f(y, p, q)=0 ; f(z, p, q)=0 ; f(x, p)=f(y, q)-$ Clairaut's form and Lagrange's equation $P p+Q q=R$. (Simple Problems)
Chapter 4: Sections 1, 2, 3, 5.1-5.4, 6

Unit V

Hours: 18
Fourier Series: Introduction to Fourier series - Definition - Examples of Fourier series - Even or odd functions - Fourier series for even and odd functions - Half range expansions. (Simple problems).
Chapter 6: Sections 1, 2, 3, 4, 5
Treatment and content as in
Calculus, Volume 3, S. Narayanan and T.K. Manicavachagam Pillai, S. Vishwanathan Publications, 2010.

References

1. Engineering Mathematics Volume 3, Dr. M.K. Venkataraman, The National Publishing Company, 2001.

Madras Christian College

Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: II
Part III (a) - Major
Paper: IV
Course Title: Differential Geometry \& Analytical Geometry of 3-Dimensions
Course Code: 111MT2M02
Credits: 4
Hours / Cycle: 5

Differential Geometry

Unit I
Hrs: 12
Curvature - Cartesian formula for radius of curvature - The coordinates of the centre of curvature Evolute and involute.
Chapter X: Sections 2.1-2.5.
Unit II
Hours: 14
Radius of curvature in polar coordinates - p-r equation - Envelopes (definitions and problems only) - Linear asymptotes (definitions and simple problems only).

Treatment and content as in (For Units I and II)
Calculus, Volume I: S. Narayanan and T K Manicavachagom Pillay, S. Viswanathan Printers and Publishers, 2010.
Chapter X: Sections 1.1 -1.4, 2.6-2.8, Chapter XI: Sections 1 - 4, 5.1-5.3, 6
Analytical Geometry of 3-Dimensions
Unit III
Hours: 17
The plane - the general equation - several forms of the equations of a plane - angle between planes - length of perpendicular - equation of the planes bisecting the angle between the planes.

Chapter II: Sections 1-11
Unit IV
Hours: 16
The Straight Line - symmetrical form - plane and straight line - coplanar lines - shortest distance between two lines.
Chapter III: Sections $\mathbf{1 - 7}$; Section 8 (Sections 8.1, 8.2 are excluded)

Unit V

Hours: 16
The Sphere - standard form - plane section - equation of sphere passing through a given circle intersection of two spheres - tangent plane to a sphere.
Chapter IV: Sections 1 - 8
Treatment and content as in (For Units III, IV and V)
A text book of Analytical Geometry - Part II (Three dimensions) - T.K. Manicavachagom Pillay and T. Natarajan, S. Viswanathan (Printers and Publishers) Pvt. Ltd 2007.

References

1. Analytical Geometry (3D) and Vector Calculus, S. Arumugam and A.Thangapandi Isaac, New Gamma Publishing House, Palayamkottai.
2. Text book of Analytical Geometry of Three Dimensions, P.K. Jain and Khalil Ahmed, Wiley Eastern Ltd, 1986.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: III
Part III (a) - Major
Paper: V
Course Title: Algebraic Structures
Course Code: 111MT3M01
Credits: $\mathbf{4}$
Hours / Cycle: 5

UNIT I
Hours: 15
Group Theory: Groups - Subgroups - Counting Principle - Normal Subgroups
Chapter 2: Sections 2.1-2.6
UNIT II
Hours: 15
Homomorphisms - Automorphisms - Cayley's theorem - Permutation groups.
Chapter 2: Sections 2.7-2.10 (omit application 1 and 2)
UNIT III
Hours: 15
Ring Theory: Definition and examples of Rings - Some special classes of rings - Homomorphisms. Chapter 3: Sections 3.1-3.3

UNIT IV
Hours: 15
Ideals and Quotient rings: More ideals and Quotient ideals - field of quotients of an integral domain.
Chapter 3: Sections 3.4-3.6
UNIT V
Hours: 15
Euclidean rings: A particular Euclidean ring - Polynomial Rings - Polynomials over the rational field.
Chapter 3: Sections 3.7-3.10
Treatment and content as in
Topics in Algebra, Second Edition, I.N. Herstein, Wiley Student edition, 2009.

References

1. Modern Algebra, M.L. Santiago, Tata McGraw-Hill Publishing Co. Ltd, 2001.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: III
Part III (a) - Major
Paper: VI
Course Title: Multivariate Calculus and Theory of Numbers Course Code: 111MT3M02
Credits: 4
Hours / Cycle: 5
Unit I
Hours: 15
Multiple Integral: Double integral - Polar and Cartesian coordinates - Change of order of integration - Jacobian - Application to area.
Chapter 5: Sections 1, 2.1, 2.2, 3.1, 5.1, Chapter 6: Section 1

Unit II

Hours: 15
Triple integral - Volume under triple integral - Surface area.
Special functions: Beta and Gamma Functions, their properties and simple problems
Chapter 5: Sections 4, 6.3, 7, Chapter 7: Sections 2.1 - 2.3, 3, 4, 5
Treatment and content as in
Calculus, Volume II, S. Narayanan and T.K. Manicavachagom Pillay, S. Vishwanathan Publishers Pvt. Ltd, 2007.

Unit III

Hours: 12
Vector Calculus: Introduction - Gradient - Divergent - Curl - Formulae involving ∇ - Invariance. Chapter: 4

Unit IV
Hours: 18
Line, Surface and Volume integrals - Theorems of Gauss, Stokes and Green's (Statements only) simple problems.
Chapters: 5, 6
Treatment and content as in
Vector Analysis, Schaum's outline series, Murray R. Spiegel., Seymour Lipschutz, Dennis Spellman, Second Edition, McGraw Hill Book Company, 2009.

Theory of numbers

Unit V

Hours: 15
Prime and Composite numbers - The sieve of Eratosthenes-Divisors of a given number N - Euler's function $\phi(N)$ - Integral part of a real number- The highest power of a prime p contained in $n!-$ the product of r consecutive integers is divisible by r! - Congruences - Numbers in arithmetic progressions - Fermat's Theorem - (statement only) - Wilson's theorem - (statement only) - Simple Problems.
Chapter 5: Sections 1 - 17

Treatment and content as in:

Algebra, Volume II by T.K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, S. Vishwanathan Publishers Pvt. Ltd, 2006.

References

1. Engineering Mathematics, Volume2, Fifth Edition, Dr. M.K. Venkataraman, National Publishing Company, 2004.
2. Elementary Number Theory, Sixth Edition, David M. Burton, Tata McGraw-Hill Pvt. Ltd, 2009.

Madras Christian College
Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: IV
Part III (a) - Major
Paper: VII
Course Title: Linear Algebra
Course Code: 111MT4M01
Credits: 4
Hours / Cycle: 5

Unit I
Hours: 18
Vector Spaces: Definitions, examples - Subspaces and Quotient Spaces - Sums and Direct Sums Linear Independence
Chapter 6: Sections 6.1-6.4

Unit II

Hours: 18
Basis and Dimensions - Homomorphisms - Dual Spaces - Inner Product Spaces
Chapter 6: Sections 6.5-6.8
Unit III
Hours: 12
Linear Transformations and Matrices: Algebra of Linear Transformations - Eigen values and Eigenvectors
Chapter 7: Sections 7.1-7.2
Unit IV
Hours: 14
Matrix Algebra - Trace and Transpose of a Matrix - Rank of Matrix
Chapter 7: Sections 7.3, 7.5, 7.6
Unit V
Hours: 13
Determinants - Hermitian and Unitary Transformations.
Chapter 7: Sections 7.8, 7.9
Treatment and content as in
Modern Algebra, M.L. Santiago, Tata McGraw-Hill Publishing Co. Ltd, 2001.

References

1. Topics in Algebra, Second Edition, I.N. Herstein, Wiley Student edition, 2009.
2. Linear Algebra, Second Edition, Serge Lang, Addison Wesley Publishing Co., 1970.

Madras Christian College
Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: IV
Part III (a) - Major
Paper: VIII
Course Title: Advanced Calculus
Credits: 4
Hours / Cycle: 5

Unit I

Hours: 15
Sets and Functions : Sets and elements - Operations on sets - Functions - Real valued functions Equivalence - Countability - Real numbers - Least upper bounds.

Chapter 1

Unit II
Hours: 15
Sequences of Real Numbers: Definition of a sequence and subsequence - Limit of a sequence Convergent sequences - Divergent sequences - Bounded sequences - Monotone sequences Operations on convergent sequences - Operations on divergent sequences.
Chapter 2: Sections 2.1-2.8
Unit III
Hours: 15
Limit superior and limit inferior - Cauchy sequences.
Series of Real Numbers: Convergence and divergence; Series with non-negative numbers; Alternating series; Conditional convergence and absolute convergence.
Chapter 2: Sections 2.9, 2.10, Chapter 3: Section 3.1 - 3.4

Unit IV

Hours: 15
Tests for absolute convergence; Series whose terms form a non-increasing sequence.
Limits and metric spaces: Limit of a function on a real line; Metric spaces; Limits in metric spaces.
Chapter 3: Sections 3.6, 3.7, 4.1, 4.2 (In 4.2C examples 4 and 5 are omitted), 4.3
Treatment and content as in
Methods of Real Analysis, Richard R. Goldberg (Oxford and IBH Publishing Co.), 1970.

Unit V

Hours: 15
Fourier Transform: Complex form of Fourier integral formula, Properties of Fourier transform, Fourier Cosine and Fourier Sine Transforms, Properties, Convolution, Parseval's identity.
Chapter 6: Sections 9-15.
Treatment and Content as in
Calculus, Volume III, S. Narayanan and Manikavasagam Pillai, S. Viswanathan Printers \& Publishers Pvt. Ltd, 2010.

References

1. Principles of Real analysis, Third edition, Walter Rudin, Mc-Graw Hill international edition, 1976.
2. Elements of Real Analysis, Shanti Narayan, M.D. Raisinhhania, S. Chand \& Company Ltd., Twelfth Revised Edition, 2011.
3. Real analysis, Volume I, K. Chandrasehhara Rao, K.S Narayan, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2008.
4. Introduction to Calculus and Analysis, Volume I, Richard Courant, Fiitz John, Springer, 2010.
5. Sequence and Series, S. Arumugam, Issac, New Gamma Publishing House, 1993
6. Transforms and Partial Differential Equations, Fifth revised edition, G. Balaji, 2010.

Madras Christian College
Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: V
Part III (a) - Major
Paper: IX
Course Title: Real Analysis
Course Code: 111MT5M01
Credits: 5
Hours / Cycle: 7

Unit I
Hours: 21
Continuous functions on Metric Spaces: Functions continuous at a point on the real line, Reformulation, Functions continuous on a metric space, Open sets, Closed sets, Discontinuous functions on the real line.

Chapter 5

Unit II
Hours: 2
Connectedness Completeness and compactness: More about open sets, Connected sets, Boundedsets and totally bounded sets, Complete metric spaces, Compact metric spaces
Chapter 6: Sections 6.1-6.5
Unit III
Hours: 21
Continuous functions on a compact metric space, Continuity of inverse functions, Uniform continuity. Sets of measure zero, Definition of the Riemann integral, Existence of the Riemann integral (Statement of theorem 7.3a only) - Properties of Riemann integral
Chapter 6: Sections 6.6-6.8, Chapter 7: Sections 7.1, 7.2, 7.4
Unit IV
Hours: 21
Calculus: Derivatives, Rolle's theorem, Law of mean, Fundamental theorems of calculus, Taylor's theorem.
Chapter 7: Sections 7.5-7.8, Chapter 8: Section 8.5
Unit V
Hours: 21
Sequences and Series of Functions: Pointwise convergence of sequences of functions - Uniform convergence of sequences of functions - Consequences of uniform convergence - Convergence and uniform convergence of series of functions - Integration and differentiation of series of functions.
Chapter 9: Sections 9.1-9.5

Treatment and Content as in

Methods of Real Analysis, Richard R. Goldberg, Oxford and IBH Publishing Co., 1970.

References

1. Transforms and Partial Differential Equations, Fifth revised edition, Walter Rudin, Mc-Graw Hill international edition, 1976.
2. Real analysis, Volume II, K. ChandrasekharaRao, K.S Narayan, S. Viswanathan Printers \& Publishers Pvt. Ltd, 2008.
3. Elements of Real Analysis, Shanti Narayan, M.D. Raisinghania, S. Chand \& Company Ltd., Twelfth Revised Edition, 2011.
4. Modern Analysis, Arumugam, Issac, New Gamma Publishing House, 1993.
5. Elementary Analysis: The Theory of Calculus, Kenneth A. Ross, Springer, 2010.
6. Understanding Analysis, Stephen Abbott, Springer, 2008.
7. MetricSpaces, Qamrulhasan Ansari, Narosa Publishing House, 2010.

Madras Christian College

Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: V
Part III (a) - Major
Paper: X
Course Title: Mathematical Statistics
Course Code: 111MT5M02
Credits: 5
Hours / Cycle: 7

Unit I
Hours: 21
Discrete and Continuous Probability Distributions: Random variables - Probability distributions

- Discrete and Continuous, Mathematical expectation, moments, moment generating function, characteristic function.
Chapters 5: Sections 5.1-5.5.2, Chapter 7: Sections 7.1-7.3.2, 7.3.5
Unit II
Hours: 21
Special Discrete and Continuous Distributions: Introduction - Binomial, Poisson distributions Normal distribution.
Chapter 6: Sections 6.1-6.2.4, 6.3-6.3.5, Chapter 8: Sections 8.1-8.4
Unit III
Hours: 21
Correlation and Regression: Correlation coefficient, linear regression - equations of lines of regression.
Chapter 10: Sections 10.1-10.6
Unit IV
Hours: 21
Tests of Significance - Large Samples: Introduction - Types of Sampling - Large samples Testing the significance for a single proportion - Testing of significance for difference of proportions - Sampling of values of a variable - Sampling distribution of the mean - Confidence limits - Testing the significance of difference between standard deviations of two large samples.
Chapter 12: Sections 12.1-12.8.2
Unit V
Hours: 21
Tests of Significance - Small Samples: Introduction - Chi - square distribution - Student's t distribution - Snedecor's F distribution (Definitions only) - Properties (Statements only) - Tests of significance based on t, F - distributions, χ^{2} test of goodness of fit, χ^{2} test of independence.
Chapter 13: Sections 13.1-13.2.2, 13.5-13.7.1, Chapter 15: Sections 15.2 -15.2.2, 15.3.1, Chapter 16: Sections 16.1-16.3.3

Treatment and Content as in

Mathematical Statistics, J. N. Kapur and H. C. Saxena, $20^{\text {th }}$ Edition, S. Chand \& Co. Ltd., New Delhi, 2010.

References

1. S. C. Gupta \& V. K. Kapoor, Fundamental of Mathematical Statistics, $9^{\text {th }}$ Edition, Sultan Chand \& Sons, New Delhi, 1994.
2. P. R. Vittal, Mathematical Statistics, Margham Publications, Chennai, 2002.

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: V
Part III (a) - Major
Paper: XI
Course Title: Numerical Methods
Course Code: 111MT5M03
Credits: 5
Hours / Cycle: 6

Unit I
Hrs: 18
Algebraic and Transcendental Equations: Introduction, Errors in numerical computation, Iterative method, Bisection method, Regula-Falsi method, Newton-Raphson method.
Chapter 3: Sections 3.0-3.5

Unit II

Hours: 18
Finite Differences: Difference operators, other difference operators, Error propagation in a difference table, Summation of series.
Chapter 6: Sections 6.0-6.3

Unit III

Hrs: 18
Interpolation: Introduction, Newton's interpolation formulae, Bessels's and Stirling's formula, Lagrange's interpolation formulae, Divided differences, Newton's divided differences formula, Inverse interpolation.
Chapter 7: Sections 7.0-7.6
Unit IV
Hrs: 18
Numerical Differentiation and Integration: Introduction, Derivatives using Newton's forward difference formula, Derivatives using Newton's backward difference formula, Numerical integration - Trapezoidal rule, Simpson's one - third, three - eighth rule, Weddle's rule.

Chapter 8: Sections 8.0-8.2, 8.5
Unit V
Hrs: 18
Numerical Solutions of Ordinary Differential Equations: Introduction, Taylor's series method, Picard's method, Euler method, Runge-Kutta methods, Predictor-Corrector methods - Milne's method, Adam- Bashforth method.
Chapter 10: Sections 10.0-10.7

Treatment and content as in

Numerical Methods, S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, SCITECH Publications Pvt. Ltd., Chennai, 2001.

References

1. Numerical Analysis, B. D. Gupta, Konark Publishers PVT LTD, New Delhi 2003.
2. Numerical Methods, First Edition, P. Kandaswamy, K. Thilagavathy, K. Gunavathi, S. Chand \& Company LTD, New Delhi, 1997.
3. Numerical Methods, V. N. Vedamurthy, N.Ch.S.N. Iyengar, Vikas Publishing House Pvt. LTD, New Delhi, 1998.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: V Part III (a) - Major Paper: XII A
Course Title: Elective - Programming in C
Course Code: 111MT5M04
Credits: 5
Hours / Cycle: 6

Unit I

Hrs: 18
Constants, Variables and Data Types - Operators and Expressions - Managing Input and Output Operations
Chapters: 2, 3, 4
Unit II
Hours: 18
Decision Making and Branching - Decision Making and Looping
Chapters: 5, 6
Unit III
Hours: 18
Arrays - Character Arrays and Strings
Chapters: 7, 8
Unit IV
Hours: 18
User Defined Functions - Structures and Unions
Chapters: 9, 10
Unit V
Hours: 18
Pointers - File Management in C
Chapters: 11, 12
Treatment and content as in
Programming in ANSI C (4 $4^{\text {th }}$ Edn.), E. Balagurusamy, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 2008.

References

1. Computer Programming in C, V. Rajaraman, Prentice-Hall of India Pvt. Ltd., New Delhi, 1994.
2. Programming in C, P. Pandiyaraja, Vijay Nicole Imprints Pvt. Ltd., Chennai, 2005.
3. The C Programming Language, B.W. Kernighan and D.M. Ritchie, Prentice-Hall of India Pvt. Ltd., New Delhi, 1986.
4. Programming with C, B.S. Gottfried, Schaum's Outline Series, Tata McGraw-Hill, New Delhi, 1995.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: V
Part III (a) - Major
Paper: XII B
Course Title: Elective - Mathematics of Finance
Course Code: 111MT5M05
Credits: 5
Hours / Cycle: 6

Unit I
Hours: 18
Simple Interest and Compound Interest: Simple interest, Equations of value, Partial payments, Simple discount, Compound Interest, Accumulated value, Discounted value, Finding the rate, Finding the time, Equations of value, Compound Discount.
Chapters: 3, 4

Unit II

Hours: 18
Simple Annuities: Simple Annuities, Accumulated value and discounted value of ordinary simple annuity, Finding term and interest rate, General annuities, Perpetuities.
Chapters: 5, 6
Unit III
Hours: 18
Amortization and Sinking Funds: Amortization of a debt, Outstanding funds, Mortgages, Sinking funds, Comparison of amortization and sinking fund methods
Chapter: 7
Unit IV
Hours: 18
Bonds: Callable bonds, Premium and discount, Price of a bond between bond interest dates, Finding the yield rate, Other type of bonds
Chapter: 8
Unit V
Hours: 18
Capital Budgeting and Depreciation: Net present value, Internal rate of return, Capitalized cost and capital budgeting, Depreciation
Chapter: 9

Treatment and content as in

Mathematics of Finance, Second edition - Petra Zima, Robert L.Brown, Schaum's Outlines Tata McGraw-Hill Edition, 2005

References

1. Business Mathematics, Third Edition, P.R. Vittal, Margham Publications, Chennai, 2005
2. Business Mathematics, V K Kapoor, Sultan Chand \& Sons, 2005.
3. Financial Management, Ninth edition, I.M. Pandey, Vikass Publishing house Pvt. Ltd., 2005.
4. Principles of Management Accounting, Fifteenth Edition, S.N. Maheshwari, Majestic Books, 2005.
5. Management Accounting, Second Edition, T.S. Reddy, Hari Prasad Reddy, Margham Publications, 2004.

Madras Christian College
Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: VI
Course Title: Complex Analysis
Credits: 5

Part III (a) - Major
Paper: XIII
Course Code: 111MT6M01
Hours / Cycle: 6

Unit I

Hours: 16
Analytic functions: Functions of a Complex variable, Mappings, limits, Theorem on limits, Continuity, derivatives, differentiation formulas, Cauchy Riemann equations, sufficient conditions, Polar coordinates, Analytic functions, Harmonic functions
Chapter 2: Sections 11, 12, 14, 15, 17 - 25
Unit II
Hours: 16
Conformal mapping - preservation of angles, Linear fractional transformations, an implicit form, mappings of the upper half plane, special linear fractional transformations, $w=z^{2}, w=e^{z}$.
Chapter 9: Section 94, Chapter 8: Sections 86 - 88, 90, Chapter 2: Section 13

Unit III

Hours: 20
Integrals: Contours, Contour integrals, upper bounds for moduli of contour integrals, Anti derivatives, Cauchy Goursat theorem, Proof of the Cauchy Goursat theorem, Simply and Multiply connected domains,- Cauchy integral formula - Derivatives of Analytical functions. Liouville's theorem and Fundamental theorem of Algebra.- Maximum modulus principle.
Chapter 4: Sections 38-50

Unit IV

Hours: 19
Convergence of sequence, Convergence of series, Taylor's series, Laurent series, Absolute and uniform convergence of power Series, Continuity of sums of power series ,Integration and differentiation of power series. Uniqueness of series representation
Chapter 5: Sections 51-60
Unit V
Hours: 19
Residues - Cauchy Residue theorem, Using a single residue, The three types of isolated singular points, Residues at poles, Zeros of analytical functions, Zeros and poles, Evaluation of real improper integrals, improper integrals from Fourier Analysis, Jordans lemma, Definite integrals involving sines and cosines.
Chapter 6: Sections 62-69, Chapter 7: Sections 71-74, 78

Treatment and content as in

Complex variables and application Seventh Edition by James Ward Brown and Ruel V. Churchill, Mc-Graw Hill Book Co., International Student Edition, 2003.

References

1. Complex Analysis, Theodore W. gamelan, Springer Verlag, 2008.
2. Complex Analysis, S.Arumugam, A.Thangapandi Isaac, A.Somasundaram,Scitech publications(India)Pvt,Ltd.Dec2010.
3. ComplexAnalysis, T.K.ManicavachagomPillay, Dr.S.P.Rajagopalan, Dr.R.Sattanathan, S.Viswanathan Printers \& Publishers Pvt. Ltd., 2008.
4. Complex Analysis, S.G.Venkatachalapathy, Margham Publication 2009.
5. Theory of functions of a Complex Variable, Shanti Narayan, Dr. P.K. Mittal, S. Chand and Company Ltd. 2010.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: VI
Part III (a) - Major
Paper: XIV
Course Title: Mechanics
Course Code: 111MT6M02
Credits: 5
Hours / Cycle: 6

Unit I

Hrs: 18
Statics: Concurrent system of forces: Triangle law of forces, Lami's Theorem, Polygon law of forces, Moment of a force, Varignon's Theorem.
Chapter 2: Sections 2.1-2.9, 2.12-2.13, 2.14-2.16, Chapter 3: Sections 3.6, 3.7
Unit II
Hrs: 18
Friction: Laws of friction, Angle of friction, Ladder problems.
Chapter 4: Sections 4.1-4.5
Treatment and content as in Statics, K.Viswanatha Naik, M.S.Kasi, Emerald Publishers, (1992)
Dynamics - Energy: Kinetic energy, Conservation of energy, Conservation forces.
Chapter 3: Sections 3.8-3.14

Unit III

Hrs: 18
Projectiles: Trajectory, Horizontal and inclined planes. S.H.M : General solution, Elastic strings, Composition of two S.H.M, Simple Pendulum, Seconds Pendulum.
Chapter 5: Sections 5.1-5.7, Chapter 8: Sections 8.1-8.4, Chapter 9: Sections 9.3-9.5
Unit IV
Hrs: 18
Motion of a particle along a curve: Conical Pendulum, Motion on a curved track, Circular track, Banked up track, Vertical curve, Motion on the outside of a smooth vertical circle, inside a vertical circle.
Chapter 9: Sections 9.8-9.14

Unit V

Hours: 18
Central Orbits: Central forces, Differential equation of a central orbit, Pedal equation, Apse, p-r equation, Inverse square law.
Chapter 10: Sections 10.1-10.8, 10.11

Treatment and content as in

Dynamics, K. Viswanatha Naik, M.S. Kasi, Emerald Publishers, 1992.

References

1. Mechanics, P.Duraipandian, Laxmi Duraipandian, Muthamizh Jayapragasam, S.Chand \& Company Ltd publications, 2010.
2. A text book of Statics, Dr. M.K. Venkataraman, Agasthiar Publications, 1994.
3. A text book of Dynamics, Dr. M.K. Venkataraman, Agasthiar Publications ,1994.

Madras Christian College
 Department of Mathematics
 B.Sc. Mathematics (with effect from 2011-12)

Semester: VI
Part III (a) - Major
Paper: XV
Course Title: Linear Programming
Course Code: 111MT6M03
Credits: 4
Hours / Cycle: 5

Unit I
Hours: 14
Linear programming Problem - Mathematical Formulation - Graphical Solution and Extension: Introduction - Linear Programming Problem - Mathematical formulation of L.P.P Illustration on Mathematical formulation of L.P.P. Graphical Solution Method - Some Exceptional Cases - General Linear Programming Problem -Canonical and Standard Forms of L.P.P.
Chapter 2: Sections 2.1-2.4, Chapter 3: Sections 3.1-3.5
Unit II
Hours: 16
Linear programming Problem - Simplex Method: Introduction - Fundamental Properties of Solutions (Theorems-Statement only)-The Computational Procedure-Use of Artificial Variables (only Big-M Method or Method of Penalties)-Degeneracy in Linear Programming.
Chapter 4: Sections 4.1-4.5
Unit III
Hours: 16
Duality in Linear Programming: Introduction -General Primal-Dual Pair-Formulating a Dual Problem- Primal-Dual Pair in Matrix Form-Duality Theorems-Complementary Slackness TheoremDuality and Simplex Method.
Chapter 5: Sections 5.1-5.7
Unit IV
Hours: 16
Transportation Problem: Introduction - LP formulation of the transportation Problem - Existence of solutions in T.P-Duality in Transportation Problem-The Transportation table-Loops in Transportation tables-Triangular Basis in a T.P-Solution of a Transportation Problem -Finding an Initial Basic Feasible Solution -Test for Optimality-Economic Interpretation of u_{j} and v_{j} Degeneracy in Transportation Problem - Transportation Algorithm(Modi Method)-Stepping Stone Solution Method-Some Exceptional Cases.
Chapter 10: Sections 10.1-10.15
Unit V
Hours: 13
Assignment Problem: Introduction- Mathematical Formulation of the problem-Solution Methods of Assignment Problems -Special Cases in Assignment Problem.
Sequencing Problem: Introduction-Problem of Sequencing-Basic terms Used in SequencingProcessing n jobs through Two Machines.
Chapter 11: Sections 11.1-11.4; Chapter 12: Sections 12.1-12.4
Treatment and content as in
Operations Research, Kanti Swarup, P.K. Gupta, Man Mohan, Sultan Chand and Sons Ltd, New Delhi, $15^{\text {th }}$ Edition, 2010.

References

1. Operations Research, Prem Kumar Gupta, D.S. Hira, S. Chand \&Company Ltd, Ram Nagar, New Delhi, 2007.
2. Operations Research Theory and Applications, Third Edition, J.K.Sharma, Macmilan India Ltd., 2007.

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: VI
Course Title: Elective - Astronomy
Credits: $\mathbf{4}$
Part III (a) - Major
Paper: XVI A
Course Code: 111MT6M04
Hours / Cycle: 5

Hours: 17
Spherical Trigonometry: Sphere - Great circles and small circles - axis and poles of a circle Distance between two points on a sphere - angle between two circles - Secondaries - angular radius - length of an arc of a small circle - spherical triangle - cosine formula, sine formula, cotangent formula (without proof)
Celestial Sphere: Celestial sphere - diurnal motion, celestial axis and equator - celestial horizon Zenith and Nadir - Celestial Meridian - Cardinal points - Declination circles - Verticals Parallactic angle - Rising and setting - Transit or culmination - due east, west, north, south - annual motion of sun - First point of Aries and First point of Libra - Equinoxes and Solstices - Celestial coordinates - Horizontal, Equatorial, Meridian, ecliptic systems - Hour Angle and azimuth at rising and setting - latitude of a place - Circumpolar Star - Twilight.
Chapter I: Sections 1-8,11-13,21-23, Chapter II: Sections 39-82,
Chapter III: Sections 111-116

Unit II

Hours: 15
Refraction: Laws of refraction - Astronomical refraction - Tangent formula - General effects Effects on rising or setting - Effect on R.A, declination - effect on small horizontal arc, vertical arc, any small arc - Cassini's Formula - Horizontal refraction
Concepts of geocentric, heliocentric parallax, aberration, Precession and Nutation (definitions only) Overview of the universe - The solar system in general - the other planets - comets - galaxies.
Chapter IV: Sections 117 - 131, Chapter V: Sections 135, 136, 140 - 145,
Chapter VIII: Sections 190, 191, 194, Chapter IX: Sections 195, 196,
Chapter X: Sections 204-206
Chapter XVII: Sections 327-340
Unit III
Hours: 15
Kepler's Laws: Kepler's Laws of planetary motion - Longitude of Perigee - Forward motion of the apse line - eccentricity of earth's orbit - To fix the position of a planet in its elliptical orbit - To express v as a series of u - mean anomaly - Kepler's equation - To express u as a series in m.
Planetary Phenomena: Phases of the planets - Relation between sidereal and synodic period of a planet, brightness of the planets.
Chapter VI: Sections 146-149,156-160, Chapter XIV: Sections 285 - 297.
Unit IV
Hours: 13
Time: Equation of time - Seasons - Calendar - Conversion of time
Chapter VII: Sections 166-170, 172-189

Moon: Relation between sidereal and synodic month - elongation - Phases of moon.
Eclipses: Umbra and Penumbra - Lunar eclipse - Solar eclipse - Condition for occurrence of a solar eclipse - angular radius of the cross section of the shadow cone where moon enters - length of earth's shadow - condition for the occurrence of a solar eclipse - ecliptic limits - maximum and minimum number of eclipses near a node - in a year - Saros of Chaldeans
Chapter XII: Sections 229-241, Chapter XIII: Sections 256-275

Treatment and content as in

Astronomy by S. Kumaravelu and Susheela Kumaravelu, 2005.

References

1. Text Book on Spherical Astronomy, Sixth Edition, W.M. Smart, VIKAS Publishing House Pvt. Ltd., 1979.
2. Exploration of the Universe, Second Edition, George Abell, 1981.

Observational Astronomy

1. Systems of coordinates - a practical study.
2. Observation of moon - at different phases.
3. Observation of planets.
4. Observation of satellites of planets.
5. Identification of constellations.

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: VI
Part III (a) - Major
Paper: XVI B
Course Title: Elective - FLUID DYNAMICS
Course Code: 111MT6M07
Credits: 4
Hours / Cycle: 5

Unit I

Hours: 15
Kinematics of fluids in motion: Real fluids and ideal fluids - velocity of a fluid at a point - stream lines and path lines; steady and unsteady flows - the velocity potential - the vorticity vector - local and particle rates of change - the Equations of continuity - worked examples - Acceleration of fluid - Conditions at a rigid boundary - general analysis of fluid motion.

Chapter 2: Sections 2.1-2.11
Unit II
Hours: 15
Equations of motions of a fluid: Pressure at a point in a fluid at rest - Pressure at a point in moving fluid - Conditions at a boundary of two inviscid immiscible fluids - Euler's equation of motion, Bernoulli's equation - worked examples.
Chapter 3: Sections 3.1-3.6
Unit III
Hours: 15
Discussion of the case of steady motion under conservative body forces - some flows involving axial symmetry - some special two dimensional flows - Impulsive motion - some further aspects of Vortex motion.
Chapter 3: Sections 3.7, 3.9-3.12

Unit IV

Hours: 15
Some Three dimensional flows: Introduction - Sources, sinks and doublets - Images in a rigid infinite plane - Images in solid spheres - Axisymmetric flows; Stoke's stream function.
Chapter 4: Sections 4.1-4.5

Unit V

Hours: 15
Some Two-dimensional flows: Meaning of two dimensional flow - use of cylindrical polar coordinates - stream function - the complex potential for two dimensional, irrotational, incompressible flow - the complex velocity potentials for standard two dimensional flows - some worked examples - Two dimensional image systems - Milne Thompson circle Theorem - The Theorem of Blasius.
Chapter 5: Sections 5.1-5.9

Treatment and content as in:

Text book of Fluid Dynamics, F. Chorlton, CBS Publishers and Distributors, 1985.

References

1. Fluid Dynamics, Walther Kaufmann, Tata McGraw-Hill, 1963.
2. Fluid Mechanics and its Applications, Vijay Gupta, Santosh K. Gupta, Wiley Eastern Ltd., 1984.

Madras Christian College
Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: I
Part III (a) - Major
Paper: XVII A
Course Title: Elective - Formal Languages and Graph Theory Course Code: 111MT6M06 Credits: 5

Hours / Cycle: 6

UNIT I
Hours: 18
Phrase-Structure languages, Closure properties: Four types of grammars, Chomskian hierarchy, Closure operations, Derivation trees, Ambiguity.
Chapter 2: Sections 2.1-2.4, Chapter 3: Sections 3.1, 3.2, Chapter 4: Sections 4.1, 4.2
UNIT II
Hours: 18
Normal form of CFG, Property of CFL: Auxiliary lemmas, Chomsky Normal form, u-v theorem. Chapter 4: Sections 4.3, 4.4 (up to Theorem 4.1 and examples 4.10, 4.11, 4.12), 4.5 (up to Theorem 4.3 and example 4.15)

UNIT III
Hours: 18
Finite State Automata: Finite Automaton, Non-Deterministic Finite Automaton, Finite Automata and Regular sets, Closure properties of Regular sets, Charaterisation of the family of Regular sets.
Chapter 5: Sections 5.1 - 5.4 (up to Theorem 5.7 and examples using it)
Treatment and content as in:
Formal Languages and Automata, Rani Siromoney, CLS, 1984.
UNIT IV
Hours: 18
Introduction, Paths and Circuits: Graphs, Incidence and degree of a vertex, Walks, Paths and Circuits, Euler graphs, Operations on graphs, Hamiltonian paths and circuits, Travelling Salesman Problem
Chapter 1: Sections 1.1-1.6, Chapter 2: Sections 2.1-2.10
UNIT V
Hours: 18
Trees, Fundamental Circuits, Cut-sets and Cut-vertices: Trees, Properties of trees, On counting trees, Spanning trees, Fundamental circuits, Cut-sets, Properties of cut-sets, Connectivity and separability.
Chapter 3: Sections 3.1-3.10, Chapter 4: Sections 4.1-4.5
Treatment and content as in:
Graph Theory with Applications to Engineering and Computer Science, Narsingh Deo, Prentice Hall of India Pvt. Ltd., 2005.

References

1. D.P. Acharjya, Theory of Computation, MJP Publications, 2010.
2. Peter Linz, An Introduction to Formal Languages and Automata, Narosa Publications, Fourth Edition, 2010.
3. Kamala Krithivasan and R. Rama, Introduction to Formal Languages, Automata Theory and Computation, Pearson, Chennai, 2011.
4. S.P. Rajagopalan and R. Sattanathan, Graph Theory, Margham Publications, Chennai, 2009.
5. S. Arumugam and S. Ramachandran, Invitation to Graph Theory, SCITECH Publications (India) Pvt. Ltd., Chennai, 2002.
6. S.A. Choudum, A First Course in Graph Theory, Macmillan India Ltd., New Delhi, 1999.

Department of Mathematics

> B.Sc. Mathematics (with effect from 2011-12)

Semester: VI
Part III (a) - Major
Paper: XVII B
Course Title: Elective - Mathematical Modeling
Course Code: 111MT6M08
Credits: 5
Hours / Cycle: 6

UNIT I
Hours: 18
Mathematical Modeling through Ordinary Differential Equations of First order: Linear Growth and Decay Models - Non-Linear Growth and Decay Models - Compartment Models Dynamic problems - Geometrical problems.
Chapter 2: Sections 2.1-2.6
UNIT II
Hours: 18
Mathematical Modeling through Systems of Ordinary Differential Equations of First Order:
Population Dynamics - Epidemics - Compartment Models - Economics - Medicine, Arms Race, Battles and International Trade - Dynamics.
Chapter 3: Sections 3.1-3.6
UNIT III
Hours: 18
Mathematical Modeling through Ordinary Differential Equations of Second Order: Planetary Motions - Circular Motion and Motion of Satellites - Mathematical Modeling through Linear Differential Equations of Second Order - Miscellaneous Mathematical Models.
Chapter 4: Sections 4.1-4.4
UNIT IV
Hours: 18
Mathematical Modeling through Difference Equations: Simple Models - Basic Theory of Linear Difference Equations with Constant Coefficients - Economics and Finance - Population Dynamics and Genetics - Probability Theory.
Chapter 5: Sections 5.1-5.5
UNIT V
Hours: 18
Mathematical Modeling through Graphs: Solutions that can be Modelled Through Graphs Mathematical Modeling in Terms of Directed Graphs, Signed Graphs, Weighted Digraphs and Unoriented Graphs.
Chapter 7: Sections 7.1-7.5
Treatment and content as in
Mathematical Modeling, J.N. Kapur, Wiley Eastern Limited, New Delhi, 1988.

References

1. J.N. Kapur, Mathematical Models in biology and Medicine, EWP, New Delhi, 1985.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: I
Part III (b) - Allied
Paper: I
Course Title: Allied I: Allied Mathematics - I (For both Physics and Chemistry)
Course Code: 111MT1A01
Credits: 5
Hours / Cycle: 6

Unit I
Hours: 18
Introduction to Partial Differentiation - Partial Differentiation - Total differential co-efficient Euler's Theorem - Maxima and Minima of functions of two variables - Lagrange's method of undetermined multipliers.
Treatment and Content as in
Calculus - Volume I by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2009.
Chapter 8: Sections 1.1 -1.6, 4, 5
Jacobian - Definition and simple problems.
Treatment and Content as in
Calculus - Volume II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2009.
Chapter 6: Sections 1.1, 2.3, 2.4
Unit II
Hours: 18
Introduction - Integration of irrational functions - Methods of integration of the following types only:
$\int \frac{d x}{\sqrt{a x^{2}+b x+c}}, \int \frac{(p x+q)}{\sqrt{\left(a x^{2}+b x+c\right)}} d x, \quad \int \sqrt{a x^{2}+b x+c} \quad d x, \quad \int(p x+q) \sqrt{a x^{2}+b x+c} d x$,
$\int \frac{d x}{(x+k) \sqrt{a x^{2}+b x+c}}$ and $\int \frac{d x}{\left(a x^{2}+b\right)\left(\sqrt{c x^{2}+d}\right)}-$
Properties of Definite integrals - Integration by parts - Bernoulli's formula.

Treatment and Content as in

Calculus - Volumes II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 1: Sections 8, 11, 12, 15.1
Unit III
Hours: 18
Second order linear differential equations with constants co-efficients - Methods of finding particular integral of the functions of $e^{a x}, \sin a x$ or $\cos a x, e^{a x} v(x), x^{m}$.
Fourier series - Even and odd functions - Half range Fourier series.
Treatment and Content as in
Calculus - Volume III by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 2: Sections 1-4; Chapter 6: Sections 1 - 5

Analytical geometry of three dimensions: Direction Cosines - direction ratios. The plane: Three forms of an equation of a plane (without derivations) - Angle between the two planes - Length of the perpendicular from a point to the plane (simple problems only) - The straight line.

Treatment and Content as in

A Textbook of Analytical Geometry Part - II - Three Dimensions by T. K. Manicavachagom Pillay and T. Natarajan, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2009.
Chapter 1: Sections 7, 8; Chapter 2: Sections 1-3, 5-7, 10; Chapter 3: Sections 1 - 4
Unit V
Hours: 18
Theory of equations: Nature of roots - Relation between the coefficients and the roots of an algebraic equation - Transformation of equations - Reciprocal equation.

Treatment and Content as in

Algebra Volume - I by T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, S. Viswanathan Printers and Publishers Pvt. Ltd., 2004.

Chapter 6: Sections 9 - 11, 15, 16
Matrices: Rank of a matrix - Eigen values and Eigen vectors - Cayley Hamilton theorem.

Treatment and Content as in

Algebra Volume - II by T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, S. Viswanathan Printers and Publishers Pvt. Ltd., 2004.

Chapter 2: Sections 11 - 16

References

1. Allied Mathematics (in single volume) P. R. Vittal, Margham Publications, Reprint 2005.
2. Allied Mathematics (For Physics, Chemistry and Computer Science Major Courses of Madras University) by A. Singaravelu (Meenakshi Traders), 2001.

Madras Christian College
Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: II
Part III (b) - Allied
Paper: II
Course Title: Allied I: Allied Mathematics - II (For Chemistry) Course Code: 111MT2A02 Credits: 5

Hours / Cycle: 6

Unit I: Partial Differential Equations
Hours: 18
Introduction to Partial Differential Equations - Order and derivation of Partial Differential Equations, Different integrals of Partial Differential Equations, Solution of Partial Differential Equations in some simple cases, Standard types of first order Partial Differential Equations (standard types I to IV).
Treatment and Content as in
Calculus - Volume III by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 4: Sections 1-4, 5.1-5.4
Unit II: Multiple Integrals
Hours: 18
Introduction - Definition of double integral, evaluation of double integral (including changing the order of integration), triple integrals, application of multiple integrals (area enclosed between curves), volume as a triple integral.
Treatment and Content as in
Calculus - Volume II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 5: Sections 1, 2, 4, 5.1, 6.3
Unit III: Vector Calculus
Hours: 18
Gradient, Divergence and curl, Vector identities, Line integral, Surface integral, Volume integral.
Treatment and content as in
Ancillary Mathematics Book III by S.Narayanan and T. K. Manicavachagam Pillay, S. Viswanathan Publishers, 1999.

Vector analysis - Chapter 2: Sections 1-12; Chapter 4: Sections 1 - 5

Unit IV: Vector Integration

Hours: 18
Statement of Gauss divergence theorem, Green's Theorem, Stokes theorem (without proof) and Applications.

Treatment and content as in

Ancillary Mathematics Book III by S. Narayanan and T. K. Manicavachagam Pillay, S. Viswanathan Publishers, 1999.

Vector analysis - Chapter 4: Sections 6 - 10

Binary operation, Definition of groups, Abelian group, Infinite group, properties of groups, Composition table for finite sets, Addition modulo m, Multiplication modulo m, Permutation and order of an element, cyclic permutation, Integral powers of an element of a group, Isomorphism of groups, Cayley's theorem, cyclic group, Properties of cyclic groups.

Treatment and content as in

Ancillary Mathematics Book I by S.Narayanan, T. K. Manicavachagom Pillay, Kandaswamy, R. Hanumantha Rao, 1999.
Chapter 8: Section II: 1 - 6

References

1. Allied Mathematics by P. R. Vittal, Margham Publications, Reprint 2005.
2. Allied Mathematics - Paper II - Second Semester by P. Kandaswamy and K. Thilagavathy, S. Chand \& Co., Reprint 2010.
3. Ancillary Mathematics Paper IV by Arumugam and Isaac, New Gamma Publishing House, 1992.

Madras Christian College
Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: II
Part III (b) - Allied
Paper: II
Course Title: Allied I: Allied Mathematics - II (For Physics)
Credits: 5
Course Code: 111MT1A01
Hours / Cycle: 6

Unit I: Partial Differential Equations
Hours: 18
Order and derivation of Partial Differential Equations, Different integrals of Partial Differential Equations, Solution of Partial Differential Equations in some simple cases, Standard types of first order Partial Differential Equations (standard types I to IV).
Treatment and Content as in
Calculus - Volume III by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 4: Sections 1-4, 5.1-5.4
Unit II: Multiple Integrals
Hours: 18
Definition of double integral, evaluation of double integral (including changing the order of integration), triple integrals, application of multiple integrals (area enclosed between curves), volume as a triple integral.
Treatment and Content as in
Calculus - Volume II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 5: Sections 1, 2, 4, 5.1, 6.3
Unit III: Vector Calculus
Hours: 18
Introduction - Gradient, Divergence and curl, Vector identities, Line integral, Surface integral, Volume integral.

Treatment and content as in

Ancillary Mathematics Book III by S.Narayanan \& T. K. Manicavachagam Pillay, S. Viswanathan Publishers, 1999.
Vector analysis - Chapter 2: Sections 1-12, Chapter 4: Sections 1 - 5

Unit IV: Vector Integration

Hours: 18
Statement of Gauss divergence theorem, Green's Theorem, Stokes theorem (without proof) and Applications.

Treatment and content as in
Ancillary Mathematics Book III by S.Narayanan and T. K. Manicavachagam Pillay, S. Viswanathan Publishers, 1999.
Vector analysis - Chapter 4: Sections 6 - 10

Definitions, Laplace transform of periodic functions, The inverse transforms, Simple problems, Solving second order differential equations with constant coefficients using Laplace transforms.
Treatment and Content as in
Calculus - Volume III by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers \& Publishers Pvt. Ltd., 2007.
Chapter 5: Sections 1 - 8

References

1. Allied Mathematics by P. R. Vittal, Margham Publications, Reprint 2005.
2. Allied Mathematics - Paper II - Second Semester by P. Kandaswamy and K. Thilagavathy, S. Chand \& Co., Reprint 2010.

Madras Christian College
 Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: III
Part III (b) - Allied
Paper: I
Course Title: Allied II: Discrete Mathematics - I (Optional Allied)
Credits: 5
Course Code: 111MT3A01
Hours / Cycle: 6

Unit I
Hours: 18
Basic Combinatorial Numbers - Stirling Numbers of the First Kind - Stirling Numbers of the Second Kind.
Section: I. 1
Unit II
Hours: 18
Generating Functions and Recurrence Relations - Symmetric Functions.
Sections: I. 2 and I. 3
Unit III
Hours: 18
Multinomials - Multinomial Theorem - Inclusion and Exclusion Principle.
Sections: I. 4 and I. 5 (up to page 77)
Unit IV
Hours: 18
Euler Function - Permutations with Forbidden Positions - The 'Menage' Problem - Problem of Fibonacci.
Sections: I. 5 (from page 77) and I. 6
Unit V
Hours: 18
Polya Theory - Necklace Problem and Burnside’s Lemma - Cycle Index of a Permutation Group Polya's theorems and their Immediate Applications.
Sections: II.1, II. 2 and II. 3

Treatment and content as in

Combinatorics Theory and Applications, V. Krishnamurthy, East -West Press. 1989.

References

1. V.K. Balakrishnan, Theory and Problems of combinatorics, Schaums outline series - Mcgraw Hill, 1994.
2. Ian Anderson, Combinatorics of finite sets, Oxford Science Publication, 2011.
3. Kenneth P. Boggart, Introductory Combinatorics, Pitman Books Ltd, 1983.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: IV
Part III (b) - Allied
Paper: 2
Course Title: Allied II: Discrete Mathematics - II (Optional Allied)
Course Code: 111MT4A01
Credits: 5
Hours / Cycle: 6

Unit I
Hours: 18
Mathematical Induction, Recurrence Relations and Generating Functions
Techniques of Proof - Mathematical Induction - Recurrence - Polynomials and their Evaluations -
Recurrence Relations - Generating Functions - Some Common Recurrence Relations - Primitive Recursive Functions - Recursive and Partial Recursive Functions.
Chapter IV: Sections 1 and 2, Chapter V: Sections 1, 2, 3, 6, 7, 8 and 9.
Unit II
Hours: 18
Mathematical Logic: TF Statements - Connectives - Atomic and Compound Statements - WellFormed Statement Formulae -Parsing - Truth Table of a Formula - Tautology - Tautological Implications and Equivalence of Formulae.
Chapter IX: Sections 1 - 8 .
Unit III
Hours: 18
Mathematical Logic (Contd...): Replacement Process - Functionally Complete sets of connectives and Duality law - Normal Forms - Principal Normal Forms.
Chapter IX: Sections 9 -11, 12.

Unit IV

Hours: 18
Lattices: Lattices - Some properties of Lattices - New Lattices - Modular and Distributive Lattices. Chapter X: Sections 1 (omit Example 15, pp No. 10.6), 2, 3 (omit Remark, pp 10.14), 4 (omit Theorem 10 and 17, Example 4, pp 10.23, Example 11, pp 10.24).

Unit V

Hours: 18
Boolean Algebra: Boolean Algebra - Boolean Polynomials - Karnaugh Maps.
Chapter X: Sections 5 (omit Theorem 25), 6, 7 (omit K-Map for 5 and 6 vertices)

Treatment and Content as in:

Discrete Mathematics, M.K. Venkataraman, N. Sridharan and N. Chandrasekaran, The National Publishing Company, Chennai, 2003.

References

1. R. Johnsonbaugh, Discrete Mathematics, $5^{\text {th }}$ Edn., Pearson Education, Asia, 2001.
2. C.L. Liu, Elements of Discrete Mathematics, McGraw Hill, New York, 1985.
3. J. Truss, Discrete Mathematics for Computer Scientists, $2^{\text {nd }}$ Edn., Pearson Education, Asia, 2000.
4. M.K. Sen and B.C. Chakraborthy, Discrete Mathematics, $2^{\text {nd }}$ Edn., Books and Allied Private Ltd., Kolkata, 2002.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: I \& II Part IV (a) - BT/AT/GC
Course Title: General Course: Basic Mathematics
Credits: 2
Course Code: 081MT1G01
Hours / Cycle: 4

Unit I
Hours: 12
Algebra: Sets and functions - Matrices
Unit II
Hours: 12
Roots of Polynomial: roots - relation between roots and coefficients - Remainder theorem and applications - Newton's Method.
Sequences and Series: Arithmetic Progression, Geometric Progression and Sum to n terms, Binomial, Exponential and Logarithmic series.
Calculus: Continuous and discontinuous functions - Graph of $\mathrm{y}=\mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}, \mathrm{e}^{\mathrm{x}}, \log _{10 \mathrm{x}} \mathrm{x} \sin \mathrm{x}, \cos \mathrm{x}$ and $\tan x$ - Derivative of the above functions.

Unit - III
Hours: 12
Calculus: Derivative of addition, subtraction, multiplication and quotient of two functions. Geometrical meaning of derivative, maxima and minima. Simple applications in Biology and Physics.

Unit - IV
Hours: 12
Integration: Geometrical meaning of integration, Integration of the above functions, Integration of Partial fractions, Definite integration, Integration by parts, areas and volumes involving functions of the above type only.

Unit - V
Hours: 12
Differential Equations: First order first degree - Solution of $d y / d x+P y=Q$ where P, Q are functions of x only.

References

1. Applied Mathematics for the managerial, Life and Social Sciences ($2^{\text {nd }}$ Edn.), S.T.Tan, Stone Hill College.
2. Algebra, Vol. I by T.K. Manicavachagom Pillay and others, S.Viswanathan Printers \& Publishers Pvt. Ltd., 1993
3. Calculus Vol. II by S. Narayanan and others, S.Viswanathan Printers \& Publishers Pvt. Ltd., 1999.
4. Calculus Vol. III by S. Narayanan and others, S.Viswanathan Printers \& Publishers Pvt. Ltd., 1999.
5. Engineering Mathematics Vol. I by M.K. Venkataraman, National Publishing Co. 1994.

Madras Christian College
Department of Mathematics
B.Sc. Mathematics (with effect from 2011-12)

Semester: III
Part IV (b) - Skill Based
Paper: 1
Course Title: Interdisciplinary: Mathematical Physics
Course Code: 111MT3I01
Credits: 3
Hours / Cycle: 4

Partial differential Equations
Unit I
Hours: 12
Introduction - Formation of Partial Differential Equations by Elimination of Arbitrary Functions Formation of Partial Differential Equations by Elimination of Arbitrary Functions - Types of Solutions of Partial Differential Equations - Solutions by Direct Integration - First Order Partial Differential Equations - Solutions by Direct Integration - First Order Partial Differential Equations - Type I $f(p, q)=0$ - Type II $z=p x+q y+f(p, q)$ (Clairaut's Form) - Type III $f(z, p, q)=0$ Type IV $f_{1}(x, p)=f_{2}(y, q)$ - Equations Reducible to Standard Forms
Chapter 3: Sections 3.0-3.10
Unit II
Hours: 12
Lagrange's Equation - Partial Differential Equations of Higher Order - Non-homogeneous Linear Equations with Constant Coefficient
Chapter 3: Sections 3.11-3.13
Applications of Partial Differential Equation
Unit III
Hours: 12
Introduction - Derivation of One Dimensional Wave Equation - Solution of Wave Equation - One Dimensional Heat Flow - Solution of One Dimensional Heat Equation
Chapter 4: Sections 4.0-4.4

Unit IV

Hours: 12
Two Dimensional Heat equation - Cartesian Form - Temperature Distribution in a Rectangular Plate - Temperature Distribution in an Infinite Plate - Temperature Distribution In Rectangular Plate with Insulated Sides
Chapter 4: Sections 4.5-4.8
Special Functions
Unit V
Hours: 12
Introduction - Bessel Functions (Omit Series Solution) - Legendre's Equation (Omit Series Solution).
Chapter 6: Sections 6.0-6.2
Treatment and Content as in
Engineering Mahematics Volume - III by S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, Second Edition, Scitech Publications (India) Pvt. Ltd., Chennai.

References

1. Engineering Mathematics Third Year - Part B by M.K. Venkataraman, The National Publishing Company, Chennai.
2. Higher Mathematics for Engineering and Science by M.K. Venkataraman, The National Publishing Company, Chennai.
3. Differential Equations, Third Edition by Shepley L. Ross, John Wiley \& Sons, 2004.
4. B.D. Gupta, Mathematical Physics, Second Revised Edition, Vikas Publising House Pvt. Ltd. 2004
5. Courant and Hilbert, Mathematical Physics

Madras Christian College
Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: V
Part IV (b) - Skill Based
Course Title: General Elective: Space Science
Credits: 3
Course Code: 111MT5L01
Hours / Cycle: 4

UNIT I

Hours: 12
Aspects of the Sky: Introduction - The celestial sphere - Its apparent daily rotation - Celestial coordinates - Diurnal circles of the stars - The sun's apparent annual path - Morning and Evening stars - Circumpolar stars - Twilight .
Chapter 2: Sections 39-63, 66-73, 75-78, 80-82, Chapter 3: Sections 111-114
UNIT II
Hours: 12
The Earth in Motion: Introduction -The Earth's rotation - Its revolution - Length of the Day Terrestrial latitude and longitude - Date line - The seasons - Calendar.
Chapter 3: Sections 87 - 93, Chapter 7: Sections 173 - 177
UNIT III
Hours: 12
Astronomical Instruments: Introduction - Sidereal Clock - Chronometer - Gnomon - Sundial Astronomical Telescope - Zenith Sector - Heliometer- Equatorial - Spectroscope - Radio Telescope.
Chapter 15: Sections 305-311, 315, 319, 320
UNIT IV
Hours: 12
The Solar system: Introduction - The Sun - The Planets - Satellites - Asteroids - Comets Meteors.

Chapter 17

UNIT V
Hours: 12
The Stellar Universe: Introduction - Stellar motion - Distance of stars - Magnitude of stars Apparent, visual and photo visual magnitudes - absolute magnitudes - relation between apparent and absolute magnitude of stars - colour and size of stars - double and multiple stars - variable stars - Novae - Star clusters - Nebulae - Constellations - Zodiacal Constellations - Milky Way Seasonal changes in the night sky.
Chapter 18: Sections 341-358

Treatment and Content as in

Kumaravelu and Suseela Kumaravelu, Astronomy, 2005.

References

1. Exploration of the Universe, George O. Abell, 1981.
2. Foundations of Astronomy, Third Edition, Michael Seeds, Wadsworth Publishing Company, California, 1992.

Madras Christian College

Department of Mathematics

B.Sc. Mathematics (with effect from 2011-12)

Semester: VI Part IV (b) - Skill Based
Course Title: Computer Training
Course Code: 111MT6M05
Credits: 3
Hours / Cycle: 2

Unit I
Hours: 6
Introduction to Maxima, Equations - Find Roots, Roots of Polynomials, Solve Linear Systems, Solve Algebraic Systems, Solve ODE, Initial Value Problems, Boundary Value Problems, Solve ODE with Laplace.

Unit II
Hours: 6
Algebra - Generate Matrix, Generate Matrix from Expression, Enter Matrix, Invert Matrix, Characteristic Polynomial, Determinants, Eigenvalues, Eigenvectors, Adjoint Matrix, Transpose Matrix.

Unit III
Hours: 6
Calculus - integration, Change Variables, Differentiation, Find Limits, Find Minimum, Get Series, Calculate Sum, Calculate Product, Laplace Transform, Inverse Laplace Transform, Greatest Common Divisor, Least Common Multiple, Divide Polynomials, Partial Fractions, Continued Fractions.

Unit IV

Hours: 6
Simplify - Simplify Expressions, Simplify Radicals, Factor Expression, Factor Complex, Expand Expression, Expand Logarithms, Contract Logarithms, Factorials and Gamma, Trigonometric Simplification, Complex Simplification.

Unit V
Hours: 6
Plot - Plot 2D, Plot 3D, Plot Format;
Numeric - Toggle Numeric Output, To Float, To Bigfloat, Set Precision,
Solving Linear Programming Problems - Simplex Methods

References

Maxima 5.25.0 Manual
(Internet Source: http://andrejv.github.com/wxmaxima/help.html)

