

M.Sc (Mathematics) Curriculum & Syllabus

DEPARTMENT OF MATHEMATICS MADRAS CHRISTIAN COLLEGE

| 2014-15 ONWARDS

MADRAS CHRISTIAN COLLEGE (AUTONOMOUS) CHENNAI – 600 059

DEPARTMENT OF MATHEMATICS

M.Sc (Mathematics) Degree Programme

Curriculum & Syllabus (1st year) (With effect from 2014-15)

MADRAS CHRISTIAN COLLEGE

Vision

Madras Christian College aspires to be an institution of excellence transforming lives through education with a commitment to service.

Mission

Madras Christian College with the inspiration of the love of God offers to people of all communities, education of the whole person which is congruous with God's revelation in Christ of the true nature of humanity and is appropriate to the needs of India and of the world.

Graduate Attributes (GAs)

The Madras Christian College defines the philosophy underpinning its academic programmes and student life experience on campus through the Graduate Attributes (GA), that describe the knowledge, competencies, values and skills students imbibe for holistic development and contribution to society. These attributes encompass characteristics that are transferable beyond the domain of study into the national and international realm fostered through curricular, co-curricular and extra-curricular engagements.

GA 1: Intellectual Competencies

- Graduates of MCC have a comprehensive and incisive understanding of their domain of study as well as the capability for cross-disciplinary learning.
- They have the ability to apply the knowledge acquired through the curriculum as well as self-directed learning to a broad spectrum ranging from analytical thinking to synthesise new knowledge through research.
- Forming independent individual opinions regarding academic cores and socially relevant issues

GA 2: Professional Ethics

- Graduates of MCC develop ethical and professional behaviour, which will be demonstrated in their chosen careers and constructive citizenship roles.
- They imbibe intellectual integrity and ethics in scholarly engagement and develop a spirit of inclusiveness through interactions with people of special needs and diversity.

GA3: Leadership Qualities

• Graduates of MCC inculcate leadership qualities & attitudes, and team behaviour along democratic lines through curricular, co-curricular and extra-curricular activities

• They develop managerial and entrepreneurial skills to ideate and create new opportunities along with career readiness and capacity to take up various competitive exams.

GA 4: Holistic Skill Development

- Graduates of MCC develop critical thinking, problem-solving, effective communication, emotional and social skills
- They develop digital competency to live, learn and serve in society.

GA 5: Cross-Cultural Competencies

- Graduates of MCC imbibe cross-cultural competencies through engaging with diverse linguistic, ethnic and religious communities providing scope to understand, accept and appreciate individuals at local, national and international levels.
- They develop a global perspective through contemporary curriculum, culture, language and international exchange programmes

GA 6: Service-Oriented Focus

- Graduates of MCC have sensitivity to social concerns and a conviction toward social justice through a commitment to active social engagement.
- They are endowed with a strong sense of environmental awareness through the curriculum and campus eco-system.

GA 7: Value-Based Spiritual Development

- Graduates of MCC are rooted in the principles of ethical responsibility and integrity permeated with Christian values leading to the building of character.
- They develop virtues such as love, courage, unity, brotherhood, industry and uprightness.

Programme Outcomes (POs) for M.Sc Degree Programmes

Programme Outcomes define the minimum level that students are expected to do, achieve and/or accomplish in order to graduate from a particular programme. These Outcomes are a framework to assess the nature of learning activity experienced within the programme. Upon completion of the programme, post graduate students should have shown evidence of being able to

	РО	Descripton of PO	Mapped GA
PO 1	Domain Knowledge	 Develop intensive and extensive knowledge and expertise in their respective domains Evaluate and create/construct domain specific knowledge in areas of learning, research and industry Formulate and extrapolate the knowledge gained to apply in real – life situations and competitive examinations Develop an aptitude for self-directed learning for excellence in their chosen area within the domain of stud 	GA1, GA3, GA4
PO 2	Applicative knowledge and Lateral Thinking	 Translate theoretical understanding to experimental knowledge and solve complex problems using Systems/Design Thinking Apply advanced knowledge and approaches to solve concrete and abstract problems in domain-related and multi-disciplinary issues. Able to solve problems using unconventional and creative approaches 	GA1, GA3, GA4
PO 3	Innovation and Research	 Develop aptitude for innovation and entrepreneurship Identify contemporary research problems, analyze data and propose solutions 	GA1, GA4, GA5, GA6
PO 4	Scientific Communication skills	 Document, prepare and present scientific work as reports and research articles in academic forums Critically assess, review and present theories, principles and concepts 	GA1, GA4, GA5, GA6
PO 5	Digital Skills	 Use of domain-related advanced software resources, computational skills and digital tools for data analysis, visualization and interpretation Ethically apply digital skills to creatively communicate a wide range of ideas and issues related to academic experiences 	GA1, GA2, GA3, GA4
PO 6	Ethical practices	• Apply domain specific ethical principles and practices in academic, professional and social engagements	GA2, GA6, GA7
PO 7	Career readiness and higher education	 Choose from diverse career options available in local, national and international realms. Carry out further research or pursue higher education in the country or abroad 	GA1, GA2, GA3

Programme Specific Outcomes (PSOs) for M.Sc (Mathematics)

At the time of graduation the students would be able to:

PSO	Description of PSO
	• Develop intensive and extensive knowledge and expertise in the domain of mathematics
PSO 1	 Evaluate and create/construct mathematical, analytical knowledge in areas of learning, research, industry and related context Formulate and extrapolate the mathematical knowledge, relate and to apply in real – life situations and competitive examinations
PSO 2	• Translate concepts and mathematical understanding to experimental knowledge and solve complex problems using Systems/Design Thinking

	• Apply advanced and specialized mathematical knowledge and mathematical $\Delta T / V P / M t$ tools to solve concrete and abstract problems
	in inter-diciplinary areas and suitable contexts.
	Apply mathematical modelling and solve using unconventional and creative approaches
	• Develop analytical and problem solving aptitude for innovation and
PSO 3	entrepreneurship
	Identify contemporary research problems, analyze data or model mathematical systems and propose solutions
	• Document, prepare and present mathematical work, inferences and
PSO 4	interpretations as reports and research articles in academic forums
100 4	• Critically assess, review and present mathematical theories,
	principles and emerging concepts
	• Use of advanced mathematical, statistical software resources,
	Generative AI tools, empirical knowledge, computational skills and
PSO 5	digital tools for data analysis, visualization and interpretation
	• Ethically apply digital skills to creatively communicate a wide range of ideas and issues related to academic experiences and suitable contexts.
PSO 6	• Explore mathematical ideass that comply with ethical principles and apply in academic, professional and social engagements
	• Choose career options such as teaching, research, project
	management, R&D laboratories, available in academic/industrial
PSO 7	sectors, local, national and international realms.
	• Carry out applied and applicable research programmes or pursue
	higher education at the national and international level

Curriculum – M.Sc (Mathematics)

S. No.	Course	Hours	Credits
	Semester 1		
1	Algebra I	6	5
2	Real Analysis I	6	5
3	Ordinary and Partial Differential Equations	6	5
4	Mechanics	6	4
5	Graph Theory	6	4
	Total	30	23
	Semester II		
6	Algebra II	6	5
7	Real Analysis II	6	5

8	Number Theory and Cryptography	6	4
9	Java Programming	5	4
10	Elective 1 (Graph Alg. & Appli / Oper. Research)	5	4
	Soft Skill Programme	2	4
	Total	30	26
	Internship		2
	Semester III		
11	Complex Analysis I	6	5
12	Topology	6	5
13	Formal Languages and Automata	6	4
14	Elective 2 (Int.Equ. & Calc. of Vari / Disc. Math)	5	4
15	Elective 3 (Math. Stat / Comp. Geometry)	5	4
	Soft Skill Programme	2	4
	Total	30	26
	Semester IV		
16	Complex Analysis II	6	5
17	Differential Geometry	6	5
18	Functional Analysis	6	5
19	Elective 4 (Fluid Dynamics / Theory of Computation)	5	4
20	Elective 5 (Fixed Point Theory / Fuzzy Sets & Appl)	5	4
	Seminar	2	
	Total	30	23
	Grand Total		100

Electives to be chosen from the following pool of courses

- 1. **Operations Research**
- 2. Graph Algorithms and Applications
- 3. Mathematical Statistics
- 4. Computational Geometry
- 5. Integral Equations and Calculus of Variations
- 6. Discrete Mathematics
- 7. Fluid Dynamics
- 8. Theory of Computation
- 9. Fixed Point Theory
- 10. Fuzzy Sets and Their Applications
- 11. Algebraic Topology
- 12. Wavelets

- 13. Commutative Algebra
- 14. Soft Computing
- 15. Computational Biology

Course title:	Algebra I									
Course Code	142MT1M01									
Credits	5									
Hours / Cycle	6									
Category	Mandatory									
Semester	Ι									
Year of Implementation	AY 2014-15									
Course Stars stores	Theory	Tutorial	Practical	Total Hours						
Course Structure	75	0	0	75						
Learning Objectives:	To repesent and underst algebraic structures with integers and real number To comprehend the relat various properties To demonstrate concept structures. To understand the impo working within various r To develop the ability to	and the relat familiar num s. tionships bet s and proper rtance of alg umber syste form and ev	ionships bet nbers system tween operat rties of vario ebraic prope ems. valuate conje	ween abstract is such as the cions satisfying us algebraic erties relative to ectures.						
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels								
CO1: Demonstrate with the basic ideas of algebra including the concepts ofPSO1, PSO2, PSO7K1, K2										

counting Homomo	principle and prphisms						
CO2: App theorems structure groups	ply the sylow to describe the of certain finite	PSO1, PSO2, PSO7		K2, K3			
CO3: Ac knowledg products, abelian gr	quire the re of direct finitely generated roups	PSO1, PSO2, PSO7 K1, K3					
CO4: Ide theorems transform form of n fundamen matrices	entify the about linear nations, canonical natrices and ntal properties of	PSO1, PSO2, PSO7	K3, K4				
CO5: Cla behaviou: Unitary a: transform	assify the r of Hermitian, nd Normal nations	PSO1, PSO2, PSO7	K2				
		Syllabus: Alge	bra I				
Unit		Content		Hours	COs	Bloom's Taxonomy Level	
Ι	UNIT I – Another C (for Theorem 2.12.1 Chapter 2: Sections 2.12.5)	Counting Principle – Sylow's , first proof only). 2.11, 2.12 (Section 2.12: On	Theorems nit Lemma	15	CO1	K1, K2	
Π	UNIT II – Solvabi Finite Abelian Grou Chapter 5: Section Theorem 5.7.1 only) Chapter 2: Section 2.14.1 only) Chapter 4: Section 4	lity by Radicals – Direct F ps – Modules. a 5.7 (Lemma 5.7.1, Lem s 2.13, 2.14 (Section 2.14: .5	roducts – ma 5.7.2, Theorem	15	CO2	K2, K3	
III	UNIT III – Canonic Transformations. Chapter 6: Sections	Nilpotent	15	CO3	K1, K3		
IV	UNIT IV – Canor Canonical Form. Chapter 6: Sections	- Rational	15	CO4	K3, K4		
V	UNIT V – Trace an Normal Transforma Chapter 6: Sections	d Transpose – Hermitian, U tions – Real Quadratic Form 6.8, 6.10, 6.11	nitary and is.	15	CO5	K3, K5	

Prescribed Books/Textbook(s) I. N. Herstein, Topics in Algebra, Second Edition, Wiley India Pvt. Ltd., New Delhi, 2006 Reference Books 1. M. Artin, Algebra, Pearson - Prentice Hall, New Delhi, 2007

2. P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul, Basic Abstract Algebra, Second (Indian) Edition, Cambridge University Press, 1997

3. I.S. Luther and I.B.S. Passi, Algebra, Vol. I-Groups, Narosa Publishing House, New Delhi, 1996

4. I.S. Luther and I.B.S. Passi, Algebra, Vol. II-Rings, Narosa Publishing House, New Delhi, 1999

5. D.S. Malik, J.N. Mordeson and M.K. Sen, Fundamentals of Abstract Algebra, McGraw-Hill (International Edition), New York, 1997

6. N. Jacobson, Basic Algebra, Vol. I & II, W.H. Freeman and co, USA 1980

Web Resources

1. www.math.iisc.ernet.in/~rakesh13/group_theory.pdf

2. https://youtu.be/yG8zAqV_Rxc

3. https://www.math.pku.edu.cn/teachers/anjp/textbook.pdf

4. http://www.astronomia.edu.uy/progs/algebra/Linear_Algebra,_4th_Edition__(2009)

Lipschutz-Lipson.pdf

5. http://www.ddegjust.ac.in/studymaterial/msc-math/mal-521.pdf

	Course Articulation Matrix for Algebra I														
Course	Programme Outcomes									Progr	amme S	pecific C	outcomes	8	
Outcome	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K1, K2
CO 2	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2, K3
CO 3	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K1, K3
CO 4	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K4
CO 5	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2, K5
Avg.	3	3	1	1	1	1	3	3	3	1	1	1	1	3	

Course title:	Real Analysis I									
Course Code	142MT1M02									
Credits	5									
Hours / Cycle	6									
Category	Mandatory									
Semester	Ι									
Year of Implementation	AY 2014-15									
Course Structure	Theory	Tutorial	Practical	Total Hours						
Course structure	75	0	0	75						
Learning Objectives:	To describe fundamental properties of the real numbers that lead to the formal development of real analysis. To omprehend rigorous arguments developing the theory underpinning real analysis. To demonstrate an understanding of limits and how they are used in sequences, series, differentiation and integration. To appreciate how abstract ideas and rigorous methods in mathematical analysis can be applied to important practical problems									
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels								
CO1: Remember different sequences and series of real numbers and analyse their convergence and divergence and various properties together with that for infinite products.	PSO1, PSO2, PSO7	ζ4								
CO2: Understand different types of convergence of sequences and series of functions and related theorems.	PSO1, PSO2, PSO7 K2, K3									
CO3: Examine multivariable functions the	PSO1, PSO2, PSO7		К3							

geometrie derivative	c meaning of their es.						
CO4: Ap extrema of functions minimize phenome volume t	ply the idea of of real valued to maximize or physical non like area, emperature etc	PSO1, PSO2, PSO7 K4					
CO5: Ap necessity approach problems	praise the of the theoretical and solve in analysis.	PSO1, PSO2, PSO7			K3		
-		Syllabus: Real An	alysis I				
Unit		Content	ĩ	Hours	COs	Bloom's Taxonomy Level	
Ι	UNIT I – Infinite S and Conditional Con Test – Rearrangeme Conditionally Conv Double Series – Rear – A Sufficient Cond Multiplication of Ser Chapter 8: Sections 8.26	Series and Infinite Products nvergence – Dirichlet's Test nts of Series – Riemann's Th ergent Series – Double Se rrangement Theorem for Do lition for Equality of Iterate ries – Infinite Products. 8.8, 8.15, 8.17, 8.18, 8.20, 8	Absolute and Abel's neorem on quences – uble Series d Series – .21 - 8.24,	15	CO1	K1, K4	
Π	UNIT II – Sequence of Sequences of Fu Real Valued Fun Convergence – Un The Cauchy Conc Uniform Converges Power Series: Multip Series Generated by Abel's Limit Theore Chapter 9: Sections 9.23	es of Functions: Pointwise Counctions – Examples of Securitions – Definition of different Convergence and Coulition for Uniform Convergence and Coulition of Infinite Series of the conversion of Power Series – The a Function – Bernstein's Theorem. s 9.1 - 9.6, 9.14, 9.15, 9.19,	nvergence puences of Uniform ntinuity – ergence – Functions. he Taylor's 'heorem – 9.20, 9.22,	15	CO2	K2, K3	
III	UNIT III – Fou Introduction – Ort Theorem on Best Ap Function Relative to of the Fourier Coeff The Convergence Trigonometric Serie The Dirichlet Integra Partial Sums of Fo Theorem – Sufficie Fourier Series at a P Chapter 11: Sections	arier Series and Fourier hogonal Systems of Function pproximation – The Fourier of an Orthonormal System – ficients – The Riesz-Fischer T and Representation Prob and Representation Prob as – The Riemann-Lebesgue als – An Integral Representat urier Series – Riemann's Lo ent Conditions for Converg articular Point. s 11.1 – 11.12	Integrals: ons – The Series of a Properties Theorem – olems for Lemma – ion for the ocalization gence of a	15	CO3	K2, K3	
IV	UNIT IV – Multivat Introduction – The Derivatives and Con Total Derivative Ex	riable Differential Calculus: Directional Derivative – Dir ntinuity – The Total Derivati pressed in terms of Partial D	ectional ve – The erivatives	15	CO4	K3, K4	

	 An Application to Complex-Valued Functions - The Matrix of a Linear Function – The Jacobian Matrix – The Chain Rule – Matrix Form of the Chain Rule – The Mean Value Theorem for Differentiable Functions – A Sufficient Condition for Differentiability – A Sufficient Condition for Equality of Mixed Partial Derivatives. Chapter 12: Section 12.1 – 12.13 			
V	UNIT V – Implicit functions and Extremum Problems: Introduction – Functions with non-zero Jacobian Determinant – The Inverse Function Theorem – The Implicit Function Theorem – Extrema of Real- Valued Functions of One Variable – Extrema of Real-Valued Functions of Several Variables Chapter 13: Sections 13.1 – 13.6	15	CO5	K3, K4

T.M. Apostol, Mathematical Analysis, Second Edition, Narosa Publishing House, New Delhi, 1985.

Reference Books

1. W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw-Hill Company, New York, 1976

2. S.C. Malik and S. Arora, Mathematical Analysis, Wiley Eastern Limited, New Delhi, 1991

3. S. Arora and B. Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991

4. B.R. Gelbaum and J. Olmsted, Counter Examples in Analysis, Holden day, San Francisco, 1964

5. R.G. Bartle, The Elements of Real Analysis, Second Edition, John Wiley and Sons Inc., USA 1976

Web Resources

1. www.//ufsj.edu.br/portal2-

repositorio/File/demat/PASTAPROF/jorge/T_F_I_e_T_F_I_Apostol.pdf

2. www.//notendur.hi.is/vae11/%C3%9Eekking/principles_of_mathematical_analysis_

walter_rudin.pdf

3. www.nptel.com

	Course Articulation Matrix for Real Analysis I														
Course		Pr	ogran	nme O	utcon	nes			Programme Specific Outcomes						
Outcome	РО	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K1, K4
CO 2	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2, K3
CO 3	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3
CO 4	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K4
CO 5	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K4

											-			-	
Avg.	3	3	1	1	1	1	3	3	3	1	1	1	1	3	

	r									
Course title:	Ordinary and Partial I)ifferential]	Equations							
Course Code	142MT1M03									
Credits		5								
Hours / Cycle		6								
Category		Mandat	tory							
Semester		Ι								
Year of Implementation	AY 2014-15									
Course Structure	Theory	Tutorial	Practical	Total Hours						
	75	0	0	75						
Learning Objectives:	To aware the students about initial value and boundary value problems and their corresponding equivalent integral equations. To aware the students about concepts of approximate solution and existence theorem. To familiarize the students about Adjoint system in detail. The objective of this course is to present the main results in the contex of partial differential equations that allow learning about these models and to study numerical methods for the approximation of their solution. To discuss some methods to solve Laplace, Heat, and Wave									
Course Outcome(s)	PSO Addressed	Blo	om's Taxor	nomy Levels						
CO1 To understand the linear differential equations with variable coefficients and their solutions.	PSO1, PSO2, PSO7		K2							
CO2: To analyse linear independence and dependence of solutions of linear differential equations with variable coefficients using Wronskians	PSO1, PSO2, PSO7									
CO3: To solve the ordinary differential equations by series solution method.	y PSO1, PSO2, PSO7 K3									
CO4: To understand the conditions for the existence and uniqueness of solutions for initial value problems.	PSO1, PSO2, PSO7 K2									
CO5: To understand the fundamental concepts of partial differential	PSO1, PSO2, PSO7		K3, ŀ	<5						

equations form of p	s, analyse canonical partial differential					
equations	and classify them.					
Unit	Syllabus	s: Ordinary and Partial I Content	Differentia	l Equatio Hours	ns COs	Bloom's Taxonomy Level
I	UNIT I – Linear I Introduction – Homogeneous Equa Equation – The W Reduction of the Or Non-Homogeneous with Analytic Coeffi Chapter 3: Sections	Equations with Variable Co Initial Value Problems ation – Solutions of the Ho ronskian and Linear Indep der of a Homogenous Equa Equation – Homogenous cients – The Legendre Equa	befficients: for the mogenous endence – tion – The Equations tion.	15	CO1	K1, K2
II	UNIT II –					
	Linear Equations Introduction – Th Equations with Reg Second Order Equa The General Case – Equation – The Bes	with Regular Singular e Euler Equation – Seco ular Singular Points – An I ations with Regular Singula - The Exceptional Cases – T sel Equation (continued).	r Points: nd Order Example – r Points – The Bessel	15	CO2	K2, K3
	Chapter 4: Sections	1-4,6-8				
III	UNIT III – Existend Order Equations: In Separated – Exact E Approximations – T of the Successive Ap Chapter 5: Sections Content and Treatm E.A. Coddington, Ar Equations, Eastern India Ltd., New Del	te and Uniqueness of Solution troduction – Equations with Equations – The Method of The Lipschitz Condition – Co proximations. 1 – 6 tent as in n Introduction to Ordinary I Economy Edition, Prenti- hi, 1987.	ons to First a Variables Successive onvergence Differential ce-Hall of	15	CO3	K3, K4
IV	UNIT IV – First Introduction – Partia in Two Independer Order Partial Diffe First Order Partial D of the Solutions Equations – Solutio Equations of First Method. Second Order Part Second Order Part Partial Differential H Classification of Equation: Canonical Chapter1: Sections 1	order Partial Differential al Differential Equations of I nt Variables – Formulation rential Equations – Comp Differential Equations – Cla of First Order Partial I on of Non-Linear Partial I Order: Charpit's Method tial Differential Equation: tial Differential Equations Equation with Constant Coe Second Order Partial I Forms. .1 – 1.3, 1.7 – 1.9 (Only 1.9. 2.1, 2.2, 2.4	Equation: First Order n of First atibility of assification Differential – Jacobi's Origin of – Linear Efficients – Differential 1 & 1.9.2)	15	CO4	K3, K4

V	 UNIT V – Elliptic Differential Equations: Occurrence of the Laplace and Poisson Equations – Boundary Value Problems – Separation of Variables Method. Parabolic Differential Equations: Occurrence and Derivation of the Diffusion Equation – Boundary Conditions – Separation of Variables Method. Hyperbolic Differential Equations: Occurrence of the Wave equation – Derivation of One- Dimensional Wave Equation – D'Alemberts Solution of One-Dimensional Wave Equation. Chapter 3: Sections 3.1 - 3.3 Chapter 4: 4.1 - 4.3 Chapter 5: 5.1, 5.2, 5.4 	15	CO5	K4, K5
---	---	----	-----	--------

J.N. Sharma and K. Singh, Partial Differential Equations for Engineers and Scientists, Second Edition, Narosa Publishing House, New Delhi, 2009

Reference Books

1. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 1972

2. M.D. Raisinghania, Ordinary and Partial Differential Equations, Fifteenth Revised Edition,

S. Chand & Company Ltd., 2013

3. D. Somasundaram, Ordinary Differential Equations, Narosa Publishing House, 2001

Web Resources

1. www.//gibbs.if.usp.br/~marchett/fismat2/linear-ode_coddington-carlson.pdf

2. www.math.iitb.ac.in>~siva>afso7

3. <u>www.//www.math.psu.edu>notesDiffEqn</u>

4.www.//lib.vcomsats.edu.pk/library/MTH343/COURSE%20CONTENT/HAND%20OUT/Ha nd_Outs%20MTH343.pdf

5. www.//www.goodreads.com/author/show/8004837.K_Sankara_Rao

	Course Articulation Matrix for Ordinary and Partial Differential Equations														
Course	Programme Outcomes Programme Specific (pecific C	outcomes	\$			
Outcome	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2
CO 2	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K4
CO 3	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3
CO 4	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2
CO 5	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K5
Avg.	3	3	1	1	1	1	3	3	3	1	1	1	1	3	

Course t	itle:	Mechanics								
Course C	Code	142MT1M04								
Credits			4							
Hours /	Cycle		6							
Category	7		Manda	atory						
Semester	r		Ι							
Year of I	mplementation	AY 2014-15		I						
Course S	tructure	Theory	Practic	al Total Hours						
Learnin	g Objectives:	To demonstrate knowledge and understanding of the fundamental concepts in the dynamics of system of particles, motion of rigid body, Lagrangian and Hamiltonian formulation of mechanics To represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation of classical mechanics. To understand theory of relativity, principles of deneral and special relativity and noyions of time dilation, dopler effect, accelerated systems, etc.								
Course (Outcome(s)	PSO Addressed	Bl	oom's Ta	xonomy	Levels				
CO1: To relation b Force , ki Energy .	establish a etween work , netic and potential	PSO1, PSO4, PSO7	K2, K3							
CO2: To Lagrange Euler - La	understand s, Hamilton's and agrange equations r applications.	PSO1, PSO4, PSO7	K2							
CO3: To constrain their appl	Classify forces , ts and examine ications	PSO1, PSO4, PSO7	К3							
CO4: To notions o theory of	understand the f time, space in relativity	PSO1, PSO4, PSO7			K2					
CO5: To special an accelerate relativistic	comprehend the ad general theories, ed systems, c dynamics	PSO1, PSO4, PSO7		K	3, K5					
		Syllabus: Mech	anics							
Unit		Content		Hours	COs	Bloom's Taxonomy Level				
Ι	UNIT I – Mechanic Generalised Coordi Energy and Momen Chapter 1: Sections	cal Systems: The Mechanica nates – Constraints – Virtu tum 1.1 – 1.5	l system – al Work –	15	CO1	K2, K3				
II	UNIT II – Lagrange Equations – Examp	e's Equations: Derivation of les.	Lagrange's	15	CO2	K2				

	Hamilton's Equations: Hamilton's Principle.			
	Chapter 2: Sections 2.1, 2.2			
	Chapter 4: Section 4.1			
III	UNIT III – Hamilton's Equations – Hamilton's Equation.			
	Hamilton-Jacobi Theory: Hamilton Principle function – Hamilton Jacobi Equation.	15	CO3	K3
	Chapter 4: Section 4.2			
	Chapter 5: Sections 5.1, 5.2			
IV	UNIT IV – Introduction to Relativity: Introduction– Relativistic Kinematics. Chapter 7: Sections 7.1, 7.2	15	CO4	K2
V	UNIT V – Relativistic Dynamics Accelerated Systems	15	CO7	
v	Chapter 7: Sections 7.3, 7.4	15	005	K3, K5

Donald T. Greenwood, Classical Dynamics, Prentice-Hall Inc, 1977.

Reference Books

 H. Goldstein, Classical Mechanics, Second Edition, Narosa Publishing House, New Delhi, 2000
 N.C. Rana and P.S. Joag, Classical Mechanics, Tata Mc-Graw Hill Publishing Company Ltd., New Delhi, 1991

Web Resources

1. www.//gibbs.if.usp.br/~marchett/fismat2/linear-ode_coddington-carlson.pdf

2. www.math.iitb.ac.in>~siva>afso7

3. www.//www.math.psu.edu>notesDiffEqn

	Course Articulation Matrix for Mechanics														
Course		Programme Outcomes Programme Specific Outcomes													
Outcome	PO	PO	PO	PO	PO	PO	PO	PSO	Cog						
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	2	1	3	1	1	3	3	2	1	3	1	1	3	K2, K3
CO 2	3	2	1	3	1	1	3	3	2	1	3	1	1	3	K2
CO 3	3	2	1	3	1	1	3	3	2	1	3	1	1	3	K3

CO 4	3	2	1	3	1	1	3	3	2	1	3	1	1	3	K2
CO 5	3	2	1	3	1	1	3	3	2	1	3	1	1	3	K3, K5
Avg.	3	2	1	3	1	1	3	3	2	1	3	1	1	3	

Course title:	Graph Theory								
Course Code	142MT1M05								
Credits	4								
Hours / Cycle	6								
Category	Mandatory								
Semester	I								
Year of Implementation	AY 2014-15								
Course Structure	Theory	Tutorial	Practical	Total Hours					
Course structure	75	0	0	75					
Loaming Objectives	To understand and apply the fundamental concepts in graph the								
Learning Objectives.	To apply graph theory based tools in solving practical problems								
	To improve the proof writing skills.								

Course (Dutcome(s)	PSO Addressed	Bl	oom's Taxonomy Levels			
CO1 To basic idea developm	o understand the us of graphs and ments.	PSO1, PSO2, PSO3, PSO7			K2		
CO2: To various g and their solving th physical p	understand the raph structures properties in ne underlying problems.	PSO1, PSO2, PSO3, PSO7		K2, K3			
CO3: To connectiv its impor- realize the Hamilton	how the vity concepts and tance and to e Eulerian and tian circuits	PSO1, PSO2, PSO3, PSO7	K3, K4				
CO4: To importan covering concepts.	o discuss the ce of matching, and colouring	PSO1, PSO2, PSO3, PSO7			K4		
CO5: To graphs ar	analyse the planar nd its properties	PSO1, PSO2, PSO3, PSO7		K4, K5			
Unit		Content		Hours	COs	Bloom's Taxonomy Level	
Ι	UNIT I – Graphs Graphs – Graph Adjacency Matrices and Connection – C Trees: Trees – Cut F Chapter 1: Sections Chapter 2: Sections	and Subgraphs: Graphs at Isomorphism – The Incic – Subgraphs – Vertex Degre cycles. Edges and Bonds – Cut Verti 1.1 – 1.7 2.1 – 2.3	nd Simple dence and ees – Paths ices.	15	CO1	K2	
II	UNIT II – Connect Euler Tours and Ha Cycles – The Chines Chapter 3: Sections Chapter 4: Sections	ivity: Connectivity – Blocks. milton Cycles: Euler Tours – se Postman Problem 3.1, 3.2 4.1 – 4.3	- Hamilton	15	CO2	K2, K3	
III	UNIT III – Mate Coverings in Biparti Edge Colourings: Theorem. Chapter 5: Sections Chapter 6: Sections	chings: Matchings – Match te graphs. Edge Chromatic number - 5.1, 5.2 6.1, 6.2	hings and – Vizing's	15	CO3	K3, K4	
IV	UNIT IV – Indepe Sets – Ramsey's The Vertex Colorings: C – Chromatic Polyno Chapter 7: Sections	endent Sets and Cliques: In corem. hromatic Number – Brook's mials. 7.1, 7.2	dependent s Theorem	15	CO4	К4	

	Chapter 8: Sections 8.1, 8.2, 8.4			
V	UNIT V – Planar Graphs: Plane and Planar Graphs – Dual Graphs – Euler's Formula – The Five-Color Theorem and The Four-Color Conjecture. Chapter 9: Sections 9.1 – 9.3, 9.6	15	CO5	K4, K5

J.A. Bondy and U.S.R Murthy, Graph Theory and Applications, Macmillan, London, 1976. Reference Books

1.J. Clark and D.A. Holton, A First Look at Graph Theory, Allied Publishers, New Delhi, 1995

2.R. Gould, Graph Theory, Benjamin/Cummings. Menlo Park,1989

3.K.R. Parthasarathy, Basic Graph Theory, Tata McGraw-Hill Publishing Company Limited, 1994 4.S.A. Choudum, A First Course in Graph Theory, Macmillan India Ltd., 1987

5.D.B. West, Introduction to Graph Theory, PHI Learning Private Ltd., New Delhi, 2001

Web Resources

1.www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf

2. https://www.elsevier.com/mathematics

3. https://www.ejgta.org

4. www.graphtheorysoftware.com

	Course Articulation Matrix for Graph Theory														
Course		Pr	ogran	nme O	utcon	nes			Programme Specific Outcomes						
Outcome	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 2	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2, K3
CO 3	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3, K4
CO 4	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K4
CO 5	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K4, K5
Avg.	3	2	3	2	1	1	3	3	2	3	2	1	1	3	

Course title:	Algebra II										
Course Code	142MT2M01										
Credits	5										
Hours / Cycle		6									
Category	Mandatory										
Semester	II										
Year of Implementation	AY 2014-15										
Course Structure	Theory	Tutorial	Practical	Total Hours							
Course structure	75	0	0	75							
Learning Objectives:	To understand the extensions of a field in the light of irreducible polynomials. To understand and identify the relationship between Galois groups To develop the ability to determine the nature of fileds To verify and evaluate the nature of given polynomials										
Course Outcome(s)	PSO Addressed	nomy Levels K6)									
CO1: Understand the concept of extensions of a field, based on the study of irreducible polynomials.	PSO1, PSO2, PSO7	K1, K2									
CO2: Identify the relationship between the roots of the polynomial and its Galois group	PSO1, PSO2, PSO7	К2, К3									

CO3: Ana groups in to apply t informati results ab polynomi	alyzing Galois simple cases and he group theoretic on to deduce out fields and als		К	1, K3		
CO4: Det of fields h number of	termine the nature naving only a finite of elements	PSO1, PSO2, PSO7		K	3, K4	
CO5:Veri polynomi radicals o	ify the given al is solvable by r not	PSO1, PSO2, PSO7		К	3, K5	
		Syllabus: Alge	bra II			
Unit		Content		Hours	COs	Bloom's Taxonomy Level
I	UNIT I – Extensior Chapter 5: Sections	1 Fields – The Transcendenc 5.1, 5.2	e of e .	15	CO 1	K1, K2
II	UNIT II – Roots of Chapter 5: Sections	Polynomials – More About 5.3, 5.5	Roots.	15	CO2	K2, K3
III	UNIT III – The Ele Chapter 5: Section 5	ments of Galois Theory. .6		15	CO3	K1, K3
IV	UNIT IV – Finite Finite Division Ring Chapter 7: Sections	Fields – Wedderburn's Th s. 7.1, 7.2 (Theorem 7.2.1 only)	eorem on	15	CO4	K3, K4
V	UNIT V – Solvak Frobenius – Integr Theorem. Chapter 5: Section and Theorem 5.7.1). Chapter 7: Sections	pility by Radicals – A Th al Quaternions and the Fo 5.7 (Omit Lemma 5.7.1 Let 7.3, 7.4	neorem of our-Square mma 5.7.2	15	CO5	K3, K5

Prescribed Books/Textbook(s) I. N. Herstein, Topics in Algebra, Second Edition, Wiley India Pvt. Ltd., New Delhi, 2006. Reference Books

1.M. Artin, Algebra, Pearson - Prentice Hall, New Delhi, 2007

2.P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul, Basic Abstract Algebra, Second (Indian) Edition, Cambridge University Press, 1997

3.I.S. Luther and I.B.S. Passi, Algebra, Vol. I-Groups, Narosa Publishing House, New Delhi, 1996 4.I.S. Luther and I.B.S. Passi, Algebra, Vol. II-Rings, Narosa Publishing House, New Delhi, 1999 5.D.S. Malik, J.N. Mordeson and M.K. Sen, Fundamentals of Abstract Algebra, McGraw-Hill (International Edition), New York. 1997

6.N. Jacobson, Basic Algebra, Vol. I & II, W.H. Freeman and co, USA, 1980

Web Resources

1. <u>https://ocw.mit.edu/</u> (MIT OPEN COURSEWARE)

2. <u>https://www.youtube.com/watch?v=Eao7SmYtMm4&list=PLOzRYVm0a65dsCb</u> _gMYe3R-ZGs53jjw02 (NPTEL)

	Course Articulation Matrix for Algebra II														
Course		Pr	ogran	nme O	utcon	nes				Progr	amme S	pecific C	Outcomes	5	
Outcome	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K1, K2
CO 2	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2, K3
CO 3	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K1, K3
CO 4	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K4
CO 5	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K5
Avg.	3	3	1	1	1	1	3	3	3	1	1	1	1	3	

Course title:	Real Analysis II											
Course Code	142MT2M02											
Credits		5										
Hours / Cycle	6											
Category	Mandatory											
Semester	II											
Year of Implementation	AY 2014-15		,,									
Course Structure	Theory	Tutorial	Practical	Total Hours								
	75	0	0	75								
Learning Objectives:	To demonstrate an understanding of Lebesque measurability To demonstrate an understanding of Lebesque integration and compare it with Riemann Integration To comprehend the concepts of Lebesque measure in Euclidean space To appreciate how abstract ideas and rigorous methods in mathematical analysis can be applied to important practical problems.											
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels										
CO1: To understand the concept of Lebesgue Outer measure and Lebesgue measurability	PSO1, PSO2, PSO7		K1, k	54								
CO2: To apply the notion of Lebesgue integration and compare it with Riemann Integration	PSO1, PSO2, PSO7 K2, K3											
CO3: To generalize the concept of Lebesgue measure to Abstract Measure Spaces	PSO1, PSO2, PSO7	K2, K3										
CO4: To apply the ideas of Lebesgue measure for solving problems	PSO1, PSO2, PSO7		K3, Þ	ζ4								
CO5: To understand the concepts of Lebesgue measure in Euclidean space	PSO1, PSO2, PSO7		K3, ŀ	54								

	Syllabus: Real Analysis II			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	UNIT I – Measure on the Real Line: Lebesgue Outer Measure – Measurable Sets – Regularity – Measurable Functions – Borel and Lebesgue Measurability. Chapter 2: Sections 2.1 – 2.5	15	CO1	K1, K4
II	Unit II Integration of Functions of a Real Variable: Integration of Non-Negative Functions – The General Integral – Integration of Series – Riemann and Lebesgue Integrals. Chapter 3	15	CO2	K2, K3
III	 UNIT III – Abstract Measure Spaces: Measures and Outer measures – Extension of a Measure – Uniqueness of the Extension – Completion of a Measure – Measure Spaces – Integration with respect to a Measure. Inequalities and the L^p Spaces: The L^p Spaces – The Inequalities of Holder and Minkowski (Statements only) – Completeness of L^p (μ). Chapter 5, Chapter 6: Sections 6.1, 6.4, 6.5 (Section 6.4: Statements of Theorems 7 and 8 only) 	15	CO3	K2, K3
IV	UNIT IV – Signed Measures and Their Derivatives: Signed Measure and Hahn Decomposition – The Jordan Decomposition – The Radon-Nikodym Theorem – Some Applications of the Radon-Nikodym Theorem. Chapter 8: Sections 8.1 – 8.4	15	CO4	K3, K4
V	 UNIT V – Measure and Integration in a Product Space: Measurability in a Product Space – The Product Measure and Fubini's Theorem – Lebesgue Measure in Euclidean Space. Chapter 10: Sections 10.1 – 10.3 	15	CO5	K3, K4

G. de Barra, Measure Theory and Integration, New Age International Pvt. Ltd., Publishers, New Delhi, 1981

Reference Books

1.J.C, Bukill, The Lebesgue Integral, Cambridge University Press, 1951

2.M.E. Munroe, Measure and Integration. Addison Wesley Mass., 1971

3.H.L. Roydon, Real Analysis, Macmillan Publishing Company, New York, 1988

4.W. Rudin, Principles of Mathematical Analysis, Wiley Eastern Limited, New Delhi, 1979

5.S. Arora and B. Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991

Web Resources

- 1. <u>https://ocw.mit.edu/</u> (MIT OPEN COURSEWARE)
- 2. <u>https://www.youtube.com/watch?v=lgZJohjjs10&list=PLgMDNELGJ1CYKDzK</u> <u>dGcM1-kuH_a1NCfQA</u> (NPTEL)

	Course Articulation Matrix for Real Analysis II														
Course		Pr	ogran	nme O	utcon	nes		Programme Specific Outcomes							
Outcome	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K1, K4
CO 2	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2, K3
CO 3	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K2, K3
CO 4	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K4
CO 5	3	3	1	1	1	1	3	3	3	1	1	1	1	3	K3, K4
Avg.	3	3	1	1	1	1	3	3	3	1	1	1	1	3	

Course title:	Number Theory and Cr	yptography										
Course Code	142MT2M03											
Credits	4											
Hours / Cycle		6										
Category		Manda	tory									
Semester		II										
Year of Implementation	AY 2014-15	T										
Course Structure	Theory	Tutorial	Practical	Total Hours								
	75 0 0 75											
Learning Objectives:	of cryptography To explain the fundamentals of cryptography, such as encryption, digital signatures and secure hashes To select appropriate techniques and apply them to solve a given problem To design and evaluate security protocols appropriate for a given situation											
Course Outcome(s)	PSO Addressed	Blo	om's Taxor	nomy Levels								
CO1: Understand different bases of number system and arithmetic operations in them with the estimates of the number of bit operations required to perform certain number theoretic tasks using computers.	PSO1, PSO2, PSO3, PSO7 K2											
CO2: Learn to compute the greatest common divisor of pair of positive integers using Euclidean algorithm and other arithmetic operations like modular exponentiation, solving congruences and factorizing integers.	PSO1, PSO2, PSO3, PSO7		K3									
CO3: Explain the concept of finite fields and identify the primitive roots of unity, quadratic residues and non- residues.	PSO1, PSO2, PSO3, PSO7 K3											
CO4: Identify the basics of cryptosystems and the key elements in it together with different types of symmetric key cryptosystems.	PSO1, PSO2, PSO3, PSO7		3									

	Syllabus: Number Theory and Cryptography										
Unit	Content	Hours	COs	Bloom's Taxonomy Level							
Ι	 UNIT I – Some Topics in Elementary Number Theory: Time Estimates for Doing Arithmetic – Divisibility and Euclidean Algorithm – Congruences – Some Applications to Factoring. Chapter I: Sections 1 – 4 	15	CO1	K2							
II	UNIT II - Finite Fields and Quadratic Residues: Finite Fields – Quadratic Residues and Reciprocity. Chapter II: Sections 1, 2 (Section 2: Omit square roots modulo p)	15	CO2	K3							
III	UNIT III – Cryptography: Some Simple Cryptosystems – Enciphering Matrices Chapter III: Sections 1, 2	15	CO3	K3							
IV	UNIT IV – Public Key: The Idea of Public Key Cryptography – RSA – Discrete Log – Knapsack. Chapter IV: Sections 1 – 4 (Section 3: Omit algorithms for finding discrete logs in finite fields and index-calculus algorithm for discrete logs)	15	CO4	K2, K3							
V	UNIT V – Primality: Pseudoprimes Elliptic Curves: Basic Facts – Elliptic Curve Cryptosystems. Chapter V: Sections 1 (Up to Proposition V.1.5) Chapter VI: Sections 1, 2	15	CO5	K3, K4							

N. Koblitz, A Course in Number Theory and Cryptography, Second Edition, Springer-Verlag, New York, 1994

Reference Books

1.I. Niven, S. Zuckermann and H.L Montgomery, An Introduction to Theory of Numbers, Fifth Edition, Wiley India Pvt. Ltd., New Delhi, 2012

2.D.M. Button, Elementary Number Theory, Seventh Edition, Tata McGraw-Hill Edition, Tata McGraw-Hill Education Pvt. Ltd., New Delhi, 2012

3.W. Stallings, Cryptography and Network Security Principles and Applications, Sixth Edition, Pearson Education in South Asia, 2014

4.R. D. Stinson, Cryptography Theory and Practice, Discrete Mathematics and its Application Series, Third Edition, Special Indian Edition, 2011

5.S. Vaudenay, A Classical introduction to Cryptography Applications for Communication Security, Springer International Edition, 2009

6.J. Buchmann, Introduction to Cryptography, Undergraduate Text in Mathematics, Second Edition, Springer, 2001

Web Resources

- 1. <u>https://ocw.mit.edu/</u> (MIT OPEN COURSEWARE)
- 2. <u>https://www.youtube.com/watch?v=iTVyKbDCJrA&list=PLgMDNELGJ1CbdG</u> Lyn7OrVAP-IKg-0q2U2 (NPTEL)
- 3. <u>https://www.youtube.com/watch?v=u7cBLb0b7pk&list=PLOzRYVm0a65fuj_5fuj1BLeQNULrM4Irj</u> (NPTEL)

	Course Articulation Matrix for Number Theory and Cryptography														
Course		Pr	ogran	nme O	utcon	nes		Programme Specific Outcomes							
Outcome	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 2	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3
CO 3	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3
CO 4	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2, K3
CO 5	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3, K4
Avg.	3	2	3	2	1	1	3	3	2	3	2	1	1	3	

Course title:	JAVA Programming			
Course Code	142MT2M04			
Credits		4		
Hours / Cycle		5		
Category		Manda	tory	
Semester		II		
Year of Implementation	AY 2014-15			
Course Structure	Theory	Tutorial	Practical	Total Hours

		75	0		75				
Learnin	g Objectives:	To learn why Java is useful for the design of desktop and web applications. To learn how to implement object-oriented designs with Java. To identify Java language components and how they work together in applications. To design and program stand-alone Java applications							
Course (Dutcome(s)	PSO Addressed	PSO Addressed Bloom's Taxonomy Levels						
CO1: De syntax an java prog	escribe the core d semantics of ramming.	PSO1, PSO2, PSO5, PSO7			K2				
CO2: Lea control st	arn about the tructures.	PSO1, PSO2, PSO5, PSO7			K2				
CO3: Inc on object technique strings an multiple i	ulcate knowledge coriented es, arrays and id interpret inheritance in java.	PSO1, PSO2, PSO5, PSO7			K3				
CO4: Imp multithre java prog manage e exception	plement ading concepts in rams and to rrrors and ns.	PSO1, PSO2, PSO5, PSO7	K4						
CO5: De with appl	sign webpages ets.	PSO1, PSO2, PSO5, PSO7 K4							
		Syllabus: JAVA Prog	gramming						
Unit		Content		Hours	COs	Bloom's Taxonomy Level			
Ι	UNIT I – Constants and Expressions. Chapters: 4, 5	, Variables and Data Types –	Operators	15	CO1	K2			
II	UNIT II - Decisio Making and Looping Chapters: 6, 7	n Making and Branching – g.	- Decision	15	CO2	K2			
III	UNIT III – Classes, and Vectors – Multi Chapters: 8, 9, 10	Objects and Methods – Arra ple Inheritance.	iys, Strings	15	CO3	K3			
IV	UNIT IV – Mult Errors and Exception Chapters: 12, 13	ithreaded Programming – ons.	Managing	15	CO4	K4			
V	UNIT V – Applet P Chapter: 14	rogramming.		15	CO5	K4			

E. Balagurusamy, Programming with Java – A Primer, Tata McGraw-Hill Education Private Ltd., New Delhi, 2010.

Reference Books

1.M. Waite and R. Lafore, Data Structures and Algorithms in Java, Techmedia (Indian Edition), New Delhi, 1999

2.A. Drozdek, Data Structures and Algorithms in Java, (Brown/Cole), Vikas Publishing House, New Delhi, 2001

3.H. Schildt, Java: The Complete Reference, Eight Edition, Tata McGraw-Hill Education Private Limited, 2011

Web Resources

- 1. <u>https://ocw.mit.edu/</u> (MIT OPEN COURSEWARE)
- 2. <u>https://www.youtube.com/watch?v=OjdT2l-</u>
 - EZJA&list=PLfn3cNtmZdPOe3R wO h540QNfMkCQ0ho

Course Articulation Matrix for JAVA Programming															
Course		Pr	ogran	nme O	utcon	nes			Programme Specific Outcomes						
Outcome	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	2	1	1	3	1	3	3	2	1	1	3	1	3	K2
CO 2	3	2	1	1	3	1	3	3	2	1	1	3	1	3	K2
CO 3	3	2	1	1	3	1	3	3	2	1	1	3	1	3	K3
CO 4	3	2	1	1	3	1	3	3	2	1	1	3	1	3	K4
CO 5	3	2	1	1	3	1	3	3	2	1	1	3	1	3	K4
Avg.	3	2	1	1	3	1	3	3	2	1	1	3	1	3	

Computer Laboratory Exercises (JAVA Programming)

1. Design a class to represent a bank Account. Include the following members:

Data Members	Methods
(1)Name of the Depositor	(1) To Assign initial values.
(2)Account Number	(2) To deposit an amount.
(3)Type of account	(3) To withdraw an amount after checking the balance.
(4)Balance	(4) To display the name and balance.

Write a Java program for handling 10 customers.

2. Java lacks a complex datatype. Write a complex class that represents a single Complex number and includes methods for all the usual operations, ie: addition, subtraction, multiplication, division.

3. Write a Java program to handle different types of exceptions using try, catch and finally statements

4. Write a Java program to implement the behavior of threads.

(a)To create and run threads.

(b)To suspend and stop threads.

(c)To move a thread from one state to another.

(d)By assigning a prioity for each thread.

5.Write an applet to draw the following shapes:

a) Cone

b) Cylinder

c) Cube

d) Square inside a circle

e) Circle inside a square.

6. Creating a Java applet which finds palindromes in sentences. Your applet will have two input controls; One input will be a text field for entering sentences, the other input will be a text field or scroll bar for selecting the minimum length a palindrome to be shown. Your applet will output the first 10 palindromes it finds in the sentence.

7. Write a program which displays a text message coming down the screen by moving left to right and modify the above program instead of text moving from left to right it moves top to bottom.

8. Create a frame that contains 3 text fields and four buttons for basic arithmetic operations. You have to enter two numbers in first two text fields. On clicking the respective button that answer should be displayed in the last text filed.

9. Create a frame with check box group containing Rectangle, Circle, Triangle, Square. If the particular value is true then the corresponding shape should be displayed.

Course title:	Operations Research									
Course Code	142MT2E05									
Credits	4									
Hours / Cycle		5								
Category		Electi	ve							
Semester		II								
Year of Implementation	AY 2014-15									
Course Stransture	Theory	Tutorial	Practical	Total Hours						
Course structure	75	0	75							
Learning Objectives:	To impart Optimization Techniques. To make the students become familiar with the basic principle of LPP and enrich knowledge to formulate and solve an LPP using various methods									
Course Outcome(s)	PSOBloom's Taxonomy LAddressed(K1 to K6)			nomy Levels K6)						
CO1: 1. To solve linear programming problems	PSO1, PSO2, PSO3, PSO7	K3								

using app technique	propriate es						
CO2: To mathema analyse an programm using diff such as fr method, method,	develop tical skills to nd solve integer ning Ferent methods ractional cut Branch and bound etc.	PSO1, PSO2, PSO3, PSO7	K2				
CO3: An programm and apply programm	alyse dynamic ning algorithm vit to solve linear ning problems	PSO1, PSO2, PSO3, PSO7			K4		
CO4: Ur types of i analyse th affecting	nderstand the nventories and ne various factors inventory control.	PSO1, PSO2, PSO3, PSO7			K2		
CO5: To mathema analyse an inventory	develop tical models to nd optimize systems	PSO1, PSO2, PSO3, PSO7	K3, K5				
		Syllabus: Operations	s Research	Ì			
Unit		Content		Hours	COs	Bloom's Taxonomy Level	
Ι	UNIT I – Duality i Method. Linear P Techniques: Introdu – Simplex Method v Chapter 5: Section 5 Chapter 9: Sections	al Simplex Advanced thod od.	15	CO1	K3		
II	UNIT II - Integer F Mixed Integer Linea All I.P.P. Method – – Fractional Cut M Fractional Cut Meth Bound Method. Dynamic Programm Equation Approac Programming – D Solution of LPP by Chapters 7: Sections Chapter 13: Sections	15	CO2	K2			
III	UNIT III – Invent Inventories – Reas Inventory Decisions Control – Costs A Affecting Inventor Problem – The Cond	ory Control: Introduction – ons for Carrying Inventori s – Objectives of Scientific ssociated with Inventories y Control – An Inventor cept of EOO – Deterministic	Types of es – The Inventory – Factors y Control Inventory	15	CO3	K4	

	Problems with No Shortages – Deterministic Inventory Problems with Shortages. Chapter 19: Sections 19.1 – 19.11			
IV	UNIT IV – Queuing Theory: Introduction - Queuing System – Elements of a Queuing System – Operating Characteristics of a Queuing System – Deterministic Queuing System – Probability Distributions in Queuing Systems – Classification of Queuing Models – Definition of Transient and Steady States – Poisson Queuing Systems.	15	CO4	K2
	Chapter 21: Sections 21.1 – 21.9 (models VII, VIII and IX are not included)			
V	UNIT V – Non-Linear Programming: Introduction – General Non-Linear Programming Problem – Constrained Optimization with Equality Constraints – Constrained Optimization with Inequality Constraints. Non-Linear Programming Methods: Introduction – Kuhn- Tucker Conditions with Non-Negative Constraints – Quadratic Programming – Wolfe's Modified Simplex Method – Beale's Method. Chapters 27: Sections 27.1, 27.3 – 27.5 (problems involving mathematical formation are not included).	15	CO5	K3, K5

K. Swarup, P.K. Gupta and M. Mohan, Operations Research, Fifteenth Edition, Sultan Chand & Sons Educational Publishers, New Delhi, 2010

Reference Books

1 J.K. Sharma, Operations Research Theory and Applications, Second Edition, Macmillan (India) New Delhi, 2005

2 M. Mohan and P.K. Gupta, Problems in Operation Research, Twelfth Edition, Sultan Chand & Sons Educational Publishers, 2009

3 H.A. Taha, Operations Research, Seventh Edition, Prentice-Hall of India Private Limited, New Delhi, 1997

4 F.S. Hiller and J. Lieberman, Introduction to Operations Research, Seventh Edition, Tata McGraw-Hill Company, New Delhi, 2001

Web Resources

- 1. <u>https://ocw.mit.edu/</u> (MIT OPEN COURSEWARE)
- 2. <u>https://www.youtube.com/watch?v=66aKgySf9vo&list=PLLy_2iUCG87Bq8RG</u> <u>MTdeFZiB-87V4i9p1</u> (NPTEL)

Course Articulation Matrix for Operations Research															
Programme Outcomes Programme Spec Course									pecific C	c Outcomes					
Outcome	РО	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3

CO 2	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 3	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K4
CO 4	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 5	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3, K5
Avg.	3	2	3	2	1	1	3	3	2	3	2	1	1	3	

Course title:	Graph Algorithms and A	pplications									
Course Code	142MT2E05										
Credits	4										
Hours / Cycle		5									
Category		Electi	ve								
Semester		II									
Year of Implementation	AY 2014-15										
Course Structure	Theory	Tutorial	Practical	Total Hours							
Course structure	75	0	0	75							
Learning Objectives:	To understand graphical To understand technique To apply algorithms and To compare algorithms a	representati es of searchin efficiently so and choose of	ons of real-li ng, sorting o olve problem optimal and o	fe problems f information ns efficient methods							
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels									
CO1: To understand and execute the Breadth and Depth first search algorithms on directed or undirected graphs and to represent graphs using the adjacency list or adjacency matrix representations. To apply the Depth-First search to toplogically sort a graph.	PSO1, PSO2, PSO3, PSO7	K2									
CO2: To understand the minimum spanning tree problem and to gain a thorough understanding of how to grow a minimum spanning tree for a given	PSO1, PSO2, PSO3, PSO7	SO1, PSO2, PSO3, PSO7 K2									
graph usin of Kruska	ng the algorithms al and Prim.										
--	---	--	--------------------------------	---------	-----	------------------------------	--				
CO3: To understan source sh directed g directed a obtain the shortest p Bellman-D Dijkstra's	gain an ading about single ortest paths in graphs and ccyclic graphs. To e single source baths using Ford and algorithms.	PSO1, PSO2, PSO3, PSO7			K3						
CO4: To algorithm Floyd Wa and Johns solve the path prob graph. To relationsh multiplica pairs shor problem.	explore s such as the arshall algorithm son's algorithm to all pairs shortest olem in a given o understand the hip between matrix ation and the all rtest path	PSO1, PSO2, PSO3, PSO7		K4							
CO5: To concept of Network' real life en increase t flow in a using the method a method to maximum matching	understand the of a "Flow ' with the aid of xamples. To he amount of flow network Ford-Fulkerson nd to apply this o obtain a h bi-partite in a given graph	PSO1, PSO2, PSO3, PSO7	01, PSO2, PSO3, PSO7 K2, K3								
	Sy	llabus: Graph Algorithms	and Appli	cations							
Unit		Content		Hours	COs	Bloom's Taxonomy Level					
Ι	UNIT I – Elementa of Graphs – Breadt Topological Sort. Chapter 22: Section	ry Graph Algorithms: Repre h-First Search – Depth-Firs 22.1 – 22.4	15	CO1	K3						
II	UNIT II - Minimum Spanning Tree – Th Chapter 23: Sections	a Spanning Trees: Growing a e Algorithms of Kruskal and 5 23.1 - 23.2	Minimum Prim.	15	CO2	K2					
III	UNIT III – Single- Ford Algorithm – Si Acyclic Graphs - Di	Source Shortest Paths: The ngle-Source Shortest Paths in jkstra's Algorithm.	Bellman- n Directed	15	CO3	K4					
	Chapter 24: Sections	3 24.1 – 24.3									

IV	UNIT IV – All-Pairs Shortest Paths: Shortest Paths and Matrix Multiplication - The Floyd-Warshall Algorithm – Johnson's Algorithm for Sparse Graphs. Chapter 25: Sections 25.1 – 25.3	15	CO4	K2
V	UNIT V – Maximum Flow: Flow Networks – The Ford- Fulkerson Method - Maximum Bipartite Matching. Chapter 26: Sections 26.1 – 26.3	15	CO5	K3, K5

Prescribed Books/Textbook(s)

T.H. Cormen, Charles E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, Third Edition, PHI Learning Private Limited, 2009

Reference Books

1. S. Dasgupta, C.H. Papadimitriou and U. Vazirani, Algorithms, First Edition, McGraw-Hill Education, 2006

2. U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, 1989

3. A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983

Web Resources

1. <u>https://ocw.mit.edu/</u> (MIT OPEN COURSEWARE)

2. https://ranger.uta.edu/~chqding/cse5311/Lectures/GraphTheory.pdf

-

	Course Articulation Matrix for Graph Algorithms and Applications														
Course	Programme Outcomes							Programme Specific Outcomes							
Outcome	РО	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	Level
CO 1	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3
CO 2	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 3	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K4
CO 4	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 5	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3, K5
Avg.	3	2	3	2	1	1	3	3	2	3	2	1	1	3	

1

...

1.4

1. ..

Course title:		Complex	Analysis	-T			
			T20401	-1			
Course Code							
Credits	5						
Hours / Cycle	6						
Category	Mandatory						
Semester			III				
Year of Implementation		AY	2014 - 15	Γ			
Course Structure	Theory	Tutorial	Practical	Total Hours			
Course Objectives:	To study the more general functions. To entire functio	Cauchy's the setting along acquire knowns and related	eory of ana with the pro wledge of in theorems.	lytic functions in a pperties of harmonic and finite products and			
Course Outcourse(a)	PSO	Bloom's Taxonomy Levels					
Course Outcome(s)	Addressed	(K1 to K6)					
CO1: Remember singularities of analytic functions, homology and properties of harmonic functions. Recall series expansion of holomorphic functions and properties of Gamma function.	PSO1 PSO3 PSO4 PSO5 PSO6 PSO7 PSO1	K1					
residues of analytic functions. Explain Poisson formula of harmonic functions, reflection principle and infinite products of complex numbers.	PSO2 PSO5 PSO6 PSO7	К2					
CO3: Apply standard results in Cauchy's theory, classify simply connected domains and solve real integrals using Cauchy's residue theorem. Illustrate Weierstrass theorem and Jensen's formula.	PSO1 PSO2 PSO3 PSO5 PSO6 PSO7		К3				

CO4: formul proof and me function expanse and pa function CO5: and a metho	Investigate Cauchy's integral la for higher order derivatives, of general Cauchy's theorem, ean value property of harmonic on. Analyse Taylor's series sion for holomorphic functions artial fractions of meromorphic ons. Justify maximum principle argument principle. Access ds of evaluation of integrals pit circle. Design the proof of	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO1 PSO2 PSO3 PSO4	K4 K5				
Lauren	nt series and Hadamard's	PSO5 PSO6					
theore	m.	PSO7					
Unit	Conte	Syllabus	:	Hours	COs	Bloom's	
Unit	Conte	iit.		110015	003	Taxonomy Level	
I	Cauchy's Integral Formula: with Respect to a Closed Curv Formula – Higher Derivatives Local Properties of Analytic Singularities – Taylor's Theor Zeros and Poles – The Local I Maximum Principle. Chapter 4: Sections 2.1 – 2.3	a Point al emovable	20	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5		
II	The General Form of Cauch and Cycles – Simple Connect General Statement of Cauchy Cauchy's Theorem – Locally Multiply Connected Regions. The Calculus of Residues: T The Argument Principle. Chapter 4: Sections 4.1 – 4.7	y's Theorem: ivity – Homolo 's Theorem – P Exact Differen he Residue The 7, 5.1, 5.2	Chains ogy – The proof of tials – eorem –	22	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5	
III	Evaluation of Definite Integra Harmonic Functions: Defini – The Mean-Value Property – Chapter 4: Sections 5.3, 6.1	lls. tion and Basic - Poisson's For – 6.3	Properties mula.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5	
IV	Schwarz's Theorem – The Re Power Series Expansions: W The Taylor Series – The Laur Chapter 4: Sections 6.4, 6.5 Chapter 5: Sections 1.1 – 1.3	flection Princip /eierstrass's Th ent Series. 3	ple. leorem –	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5	

V	Partial Fractions and Factorization: Partial		CO1	K1				
	Fractions – Infinite Products – Canonical Products –		CO2	K1 K2				
	The Gamma Function.	18	CO3	KZ K2				
	Entire Functions: Jensen's Formula – Hadamard's		CO4	K5				
	Theorem.		CO5	K4				
	Chapter 5: Sections 2.1 – 2.4, 3.1, 3.2			K5				
Prescr	ibed textbook(s)							
L. V. A	Ahlfors, Complex Analysis, Third Edition, McGraw-Hill	Book Con	npany, Ne	ew Delhi,				
1979.			1 0	,				
Refere	ence books for further reading:							
1. S. Po	onnusamy, Foundations of Complex Analysis, Second Edition	on, Narosa	Publishir	ng Company,				
2005.	2005.							
2. S. K	2. S. Kumaresan, A Pathway to Complex Analysis, First Edition, Techno World, 2021.							
3. J.B.	3. J.B. Conway, Functions of One Complex Variable, Second Edition, Narosa Publishing House,							
New D	New Delhi, 1978.							
Sugge	sted books for further reading:							
1. R. R	emmert, Theory of Complex Functions, Springer Internation	nal Edition	, 1991.					
2. T. W	V. Gamelin, Complex Analysis, Springer International Edition	on, Springe	er-Verlag,	New York				
Inc., 20	001.		-					
3. S.La	ng, Complex Analysis, Third Edition, Springer, 1993.							
Web r	esources:							
https:/	//archive.nptel.ac.in/courses/111/106/111106084/							
https:/	//www.swayamprabha.gov.in/index.php/program/ar	chive_he/	<u>'38</u>					
https:/	//www.youtube.com/playlist?list=PLyqSpQzTE6M_f	DgY78f5 1	AT5zR6x	<u> HAajo</u>				
https:/	//ocw.mit.edu/courses/18-04-complex-variables-with	applicatio	ons-sprin	<u>ig-2018/</u>				

Со	Prog	ramme	Outco	mes				Progr	Programme Specific Outcomes					К	
	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS	PS	PS	PS	Level
		2	3	4	5	6	7	01	O 2	O 3	O 4	O 5	O 6	O 7	
CO 1	3	-	2	1	2	2	1	3	-	2	1	2	2	1	K1
CO 2	3	2	-	-	1	1	2	3	2	-	-	1	1	2	K2
CO 3	3	1	3	1	1	1	1	3	1	3	1	1	1	1	K3
CO 4	2	3	3	1	1	2	2	2	3	3	1	1	2	2	K4
CO 5	3	2	3	1	1	3	2	3	2	3	1	1	3	2	K5
Avg.	2.8	2	2.75	1	1.2	1.8	1.6	2.8	2	2.75	1	1.2	1.8	1.6	
Avg.				1.593								1.59	3		

Course Articulation Matrix

Course title:	Тороlоду					
Course Code	142MT3M02					
Credits		5				
Hours / Cycle		6				
Category		Mandat	tory			
Semester		111				
Year of Implementation	AY 2014-15					
Course Structure	Theory	Tutorial	Practica	al .	Total Hours	
	90	0	0		90	
Learning Objectives:	To introduce the fundament various topologies and to stu compactness in a much broa metrizability	al concept of udy the funda ider setting ai	a topology mental not nd to study	on a set, s ions of cor the condit	urveying nectedness and ion for	
Course Outcome(s)	PSO Addressed		Bloom's Ta	xonomy Le	evels	
CO1 : Recall the concept of topology on a set and of other various topologies and to recall fundamental concepts of connectedness and compactness along with the countability and separation axioms	PSO1,PSO2,PSO3 PSO6,PSO7	К1				
CO2: CO2: Compare different topologies that can be defined on a set and to discuss connectedness, compactness, countability axioms and separation axioms	PSO1,PSO2,PSO3 PSO6,PSO7			К2		
CO3 Apply the fundamental notions in order to produce conditions for a set to satisfy connectedness, compactness and the condition of metrizability	PSO1,PSO2,PSO3 PSO6,PSO7	КЗ				
CO4: Apply the fundamental notions in order to produce conditions for a set to satisfy connectedness, compactness and the condition of metrizability	PSO1,PSO2,PSO3 PSO4, PSO6,PSO7	К4				
CO5: Assess the concepts of various topologies in relation with connectedness, compactness and construct the conditions for metrizability	К5					
	Syllabus:					
Unit	Content		Hours	COs	Bloom's Taxonomy Level	
I Topological Spaces: Topological Spaces – Basis for a 18 CO1 K1 Topology – The Order Topology – The Product CO2 K						

	Topology on $X \times Y$ – The Subspace Topology – Closed		CO3	
	Sets and Limit Points.		CO4	
	Chapter 2: Sections 12 – 17		CO5	
II	Continuous Functions: Continuous Functions – The		CO1	
	Product Topology – The Metric Topology.	18	CO2	K1,K2,K3
	Chapter 2: Sections 18 – 21		CO3	K4,K5
			CO4	
III	Connectedness: Connected Spaces – Connected		CO1	
	Subspace of the Real Line – Components and Local	18	CO2	K1,K2,K3
	Connectedness.		CO3	K4,K5
	Chapter 3: Sections 23 – 25		CO4	
IV	Compactness: Compact Spaces – Compact Subspaces of		CO1	
	the Real Line – Limit Point Compactness – Local	18	CO2	K1.K2.K3
	Compactness.	10	CO3	K4.K5
	Chapter 3: Sections 26 – 29		CO4	11,110
			0.04	
V	Countability and Separation Axiom: The Countability		CO1	
	Axioms – The Separation Axioms – Normal Spaces – The	18	CO2	K1,K2,K3
	Urysohn Lemma – The Urysohn Metrization Theorem –		CO3	K4,K5
	The Tietze Extension Theorem.		CO4	,
	Chapter 4: Sections 30 – 35		CO5	
J.R. M	unkres, Topology, Second (Indian) Edition, PHI Learning	, Pvt. Ltd.,	New De	lhi, 2000
Refere 1. J. 2. G (I 3. J.	nce books for further reading Dugundji, Topology, Prentice Hall of India, New Delhi, 19 G.F. Simmons, Introduction to Topology and Modern Analy India) Pvt. Ltd., New Delhi, 1963 L.R. Kelly, General Topology, Van Nostrand, Reinhold Co.	66 sis, McGrz , New Yor	ıw-Hill Ed k, 1955	lucation
Sugge	ested reading			
1.	L. Steen and J. Seeback, Counter Examples in Topology,	Holt, Rine	hart and	Winston,
	New York, 1970	- ·		
2.	Steven G. Krantz, Essentials of Topology with Application	ons, Specia	l Indian E	Edition, CRC
	Press, 2015			
W 7 - 1-				
web r		11 0004/		
<u>https:/</u>	/ocw.mit.edu/courses/18-901-introduction-to-topology-fa	<u>111-2004/</u>		
https:/	//onlinecourses.nptel.ac.in/noc23 ma99/preview			
https:/	/onlinecourses.nptel.ac.in/noc24 ma10/preview			

Course	Articu	lation	Matrix												
Со	o Programme Outcomes							Programme Specific Outcomes						K	
	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	O 2	O 3	O 4	O 5	O 6	O 7	
CO 1	3	2	1	-	-	1	2	3	2	1	-	-	1	2	K1
CO 2	3	2	2	-	-	2	3	3	2	2	-	-	2	3	K2
CO 3	3	2	2	-	-	2	2	3	2	2	-	-	2	2	K3
CO 4	2	1	3	2	-	2	2	2	1	3	2	-	2	2	K4
CO 5	1	2	1	2	-	2	3	1	2	1	2	-	2	3	K5
Avg.	2.4	1.8	1.6	2	-	1.8	2.4	2.4	1.8	1.6	2	-	1.8	2.4	
				2							2				

Course title	FOR	UTOMATA						
Course Code		142MT3M03						
Credits		4						
Hours / Cycle		6						
Category	Core							
Semester		11						
Year of Implementation		AY 2014-15						
Course Structure	Theory	Practical	Total Hours					
	90	-	90					
	To familia	rise students with the fo	oundations and					
Course Objectives:	principles of	Automata theory and to	strengthen their					
	ability to ca	arry out formal and rigor	ous arguments.					
	PSO							
Course Outcome(s)	Addressed	Bloom's Ta	axonomy Level					
CO1: Recall the notions of	PSO 1,							
automata, formal languages,	PSO2,							
machine models, grammar	PSO3,	K1						
structures and their properties.	PSO4,							
	PSO 7							
CO2: Examine the functioning of	1507							
machine models, grammar	PSO 1,							
schemes	PSO2,							
and discuss the properties of	PSO5.							
those	PSO6.	K2						
machine models and grammar	PSO 7							
schemes.								
CO3: Classify the variants among	PSO 1.							
machine models(FSA, PDA) and	PSO2.							
grammar schemes(LLG,	PSO3,	V-						
RLG,CFG), representation of	PSO4,	К3						
languages and solve related	PSO5,							
problems.	PSO 7							
CO4: Identify the families of	PSO2,							
languages and investigate the finer	PSO3,							
properties of such families of	PSO4,	К4						
languages.	PS05,							
	PS07							
(05: Design algorithms and	d PSO2.							
construct decisions based on the	PSO4.							
construct accisions based on the	PSO ₅ ,	К5						
	PSO6,							

properties of machine models and grammar schemes.	PSO7	
8		

	FORMAL LANGUAGES AND AUTOMATA Syllabus:									
Unit	Content	Hours	Cos	Bloom's						
				Taxonomy						
	Introduction to the Theory of Commutations			Level						
1	Three Basic Concepts									
	Finite Automata: Deterministic Einite Accenters –		CO1	K1						
	Nondeterministic Finite Accepters – Equivalence of		(0)	Ka						
	Deterministic and Nondeterministic Finite		02	N2						
	Accepters. Regular Languages: Regular Expressions	18	CO3	К3						
	 Connection between Regular Expressions and 		CO4	K4						
	Regular Languages.			V -						
	Chapter 1: Section 1.2		05	N 5						
	Chapter 2: Sections 2.1 – 2.3 Chapter 2: Sections 2.1 – 2.3									
	Regular Grammars: Begular Grammars		(01	К1						
	Properties of Regular Languages: Closure Properties									
	of Regular Languages – Elementary Questions about		CO2	K2 K3						
	Regular Languages – Identifying Nonregular	18	CO3							
	Languages. Chapter 3: Section 3.3		CO4	К4						
	Chapter 4: Sections 4.1 – 4.3		CO5	K5						
III	Context-Free Languages: Context-Free Grammars –		CO1	K1						
	Parsing and Ambiguity		CO2	K-						
	Simplification of Context-Free Grammars and	19	(0)	K2						
	Grammars – Two Important Normal Forms	10	03	К3						
	Chapter 5: Sections 5.1, 5.2		CO4	K4						
	Chapter 6: Sections 6.1, 6.2		CO5	V -						
				N5						
IV	Pushdown Automata: Nondeterministic		CO1	K1						
	Context – Free Languages – Deterministic		CO2	K2						
	Pushdown Automata and Deterministic Context –	18	CO3	Ka						
	Free Languages.		,	13						
	Chapter 7: Sections 7.1 – 7.3		CO4	K4						
			CO5	K5						
V	Unit V		(01	K1 K2						
	Properties of Context-Free Languages: Two	18								
	Pumping Lemmas – Closure Properties and Decision		CO2							
	Algorithms for Context – Free Languages.									

	Chapter 8		CO3	K3
			CO4	К4
			CO5	K5
	Prescribed textbook(s)			
P. Liı	nz, An Introduction to Formal Languages and Automata	, Sixth Edi	ition, Jon	ies & Bartlett
	Learning, LLC, First Indian Edition	, 2017		
	Reference books:			
1. J.E	E. Hopcroft and J.D. Ullman, Introduction to Automata 1	heory, La	nguages,	,
	and Computation, Narosa Publishing House, New D	elhi, 1989)	I	
2	. M. Sipser, Introduction to Theory of Computation, PW	'S Publishi	ng Comp	any, 1997
	3. D. C. Kozen, Automata and Computability, Spri	nger, New	v York, 19	97
4. K.	Krithivasan and R. Rama, Introduction to Formal Langu	ages, Aut	omata Th	ieory
	and Computation, Pearson, New Delhi, 2	009		
	Suggested books for further read	ling :		
Grz	<u>egorz Rozenberg, Arto Salomaa</u> , Handbook of Formal La	nguages:	Volume I-	III, Springer,
	1997, <u>ISBN 3-540-61486-9</u>			
	.Web resources:			
	1. <u>https://archive.nptel.ac.in/courses/106</u>	/103/10610	<u>3070/#</u>	
	2. https://ocw.mit.edu/courses/6-045j-automata-comp	utability-ai	nd-compl	<u>exity-</u>
	spring- 2011/pages/lecture-not	es/		

3. https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf

FORMAL LANGUAGES AND AUTOMATA Course Articulation Matrix															
СО			Progra	mme O	utcom	es		Programme Specific Outcomes							К
	РО	РО	РО	РО	РО	PO	PO	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	0 2	03	04	05	06	07	
CO 1	3	2	1	1	2	-	2	3	2	1	1	2	-	2	K1
CO 2	2	3	2	-	2	1	3	2	3	2	-	2	1	3	K2
CO 3	2	2	3	2	1	-	2	2	2	3	2	1	-	2	К3
CO 4	-	2	3	3	1	1	1	-	2	3	3	1	1	1	K4
CO 5	-	3	-	3	2	1	3	-	3	-	3	2	1	3	K5
Avg.	2.33	2.4	2.25	2.25	1.6	1	2.2	2.33	2.4	2.25	2.25	1.6	1	2.2	
				2							2				

Course title:	INTEGRAL	L EQUATIONS	ONS AND (CALCULUS OF			
Course Code		142M	IT3E05				
Credits	5						
Hours / Cycle		5					
Category		I	Elective				
Semester			II				
Year of Implementation		AY	Y 2014-15				
Course Structure	Theory	Tutorial	Practical	Total Hours			
Course Objectives:	To study var integral equa solving diffe moving bour	ious techniq ations and t rent variation adary condition	ues of solvir o know abc onal problem ions	ng different types of out the methods of ns under fixed and			
Course Outcome(s)	PSO Addressed	Blo	om's Taxon (K1 to	iomy Levels K6)			
CO1: Remember regularity conditions, Volterra and Fredholm integral equations and symmetric integral equations. Recall Euler equations and moving boundary problems.	PSO1 PSO3 PSO4 PSO5 PSO6 PSO7		K1				
CO2: Examine systems of algebraic equations corresponding to Integral equations with separable kernels, resolvent kernel and eigen value problems. Compare different extremal problems based on corresponding Euler equations and moving boundary problems with more than one variable.	PSO1 PSO2 PSO5 PSO6 PSO7	K2					
CO3: Apply approximate method, Fredholm method to solve Integral equations and Bilinear Form .Illustrate variational problems involving higher order derivatives and extremals using corners.	PSO1 PSO2 PSO3 PSO5 PSO6 PSO7		K3				
CO4: Analyse Fredholm alternatives, iterative scheme, Hilbert-Schmidt Theorem and Investigate variational problems in parametric form and canonical forms of Euler's equation.	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7						
CO5: Evaluate Eigen values and Eigen functions of an integral equation and solutions of Volterra Integral equations by method of successive approximations Cauchy-Type	PSO1 PSO2 PSO3 PSO4 PSO5		K5				

Integra	als. Design solutions to practical								
variatio	onal problems and one-sided								
variational problem.									
T T •		Syllabu	ls:			DI			
Unit	Content			Hours	COs	Bloom's Taxonomy Level			
Ι	Introduction: Definition – Re	egularity Con	ditions –						
	Special Kinds of Kernels Eigenfunctions – Convolution I Scalar Product of Two Function Integral Equations with Reduction to a system of A Examples – Fredholm Alternation Approximate Method. Chapter 1: Sections 1.1 – 1.6 Chapter 2: Sections 2.1 – 2.5	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5					
Π	Method of Successive Appr Scheme – Examples – Volterra Examples – Some Results about Classical Fredholm Theory: T of Fredholm – Fredholm's Firs only) – Examples – Fredhola (statement only) – Fredhola (statement only). Chapter 3: Sections 3.1 – 3.5 Chapter 4: Sections 4.1 – 4.5	Iterative uations – t Kernel. Solution statement Theorem Theorem	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5				
III	Symmetric Kernels: Introduction Properties of Eigenvalues and Eig Symmetric Kernels – Expansion i Bilinear Form – Hilbert-Schmidt Immediate Consequences – Solut Integral Equation – Examples. Singular Integral Equations: Th Equation – Examples – Cauchy P Integrals – The Cauchy-Type Integrals – The Cauchy-Type Integral Type Integral Equation on the Res Chapter 7: Sections 7.1 – 7.6 Chapter 8: Sections 8.1 – 8.5	tal ors and Some hetric al for auchy-	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5				
IV	The Method of Variations in P Boundaries: Variations and its 1 Equation – Functionals of the fo $\int F(x, y_1, y_2, \dots, y_n, y'_1, y'_2, \dots, y'_n)$ Dependent on Higher Order Der Dependent on the Functions of S Variables – Variational Problem – Some Applications. Chapter 6: Sections 1 – 7.	Fixed Culer's ionals ctionals endent ic Forms	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5				

VVariational Problems with moving Boundaries and Certain Other Problems: An Elementary Problem with Moving Boundaries – The Moving Boundary Problem for a functional of the form $\int_{x_0}^{x_1} F(x, y, z, y', z') dx$ – Extremals with Corners – One-sided Variations.Sufficient Conditions for an Extremum: Field of Extremals – The function $E(x, y, p, y')$ – Transforming the Euler's Equations to the Canonical Form. Chapter 7: Sections 1 – 4 Chapter 8: Sections 1 – 3	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
---	----	---------------------------------	----------------------------

Prescribed textbook(s)

1. Ram P.Kanwal, Linear Integral Equations – Theory and Technique, Birkhauser, 1997 Edition.

2. L.Elsgolts, Differential Equations and the Calculus of Variations, University Press of the Pacific, Honolulu, Hawaii, 2004.

Reference books for further reading:

1. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall Inc., New Jersey, 1963

2. A. Jeffrey, Integral Equations: A Short Course, International Textbook Company Ltd., Scotland, 1976.

3. M.Rahman, Integral Equations and Their Applications, WIT Press, Boston, 2007.

Suggested books for further reading :

1. A.S.Gupta, Calculus of Variations, Prentice Hall of India Pvt Ltd., 1996

Web resources:

https://nptel.ac.in/courses/111104025

https://www.youtube.com/watch?v=SWSkX e Yyk

https://ocw.mit.edu/courses/18-086-mathematical-methods-for-engineers-ii-spring-

2006/e94c05947ed036cd6ad0150102087062 am72.pdf

Course Articulation Matrix															
Со	Prog	ramme	Outco	mes				Prog	ramme	Specif	ic Outo	comes			К
	PO	PO	PO	PO 4	PO 5	PO	PO	PS	PS	PS	Level				
	1	2	3			6	7	01	02	03	04	05	06	07	
CO 1	3	-	2	1	2	2	1	3	-	2	1	2	2	1	K1
CO 2	3	2	-	-	1	1	2	3	2	-	-	1	1	2	K2
CO 3	3	1	3	1	1	1	1	3	1	3	1	1	1	1	K3
CO 4	2	3	3	1	1	2	2	2	3	3	1	1	2	2	K4
CO 5	3	2	3	1	1	3	2	3	2	3	1	1	3	2	K5
Avg.	2.8	2	2.75	1	1.2	1.8	1.6	2.8	2	2.75	1	1.2	1.8	1.6	
Avg				1.593							1.593				

Course title:	DISCRETE	MATHEM	ATICS						
Course Code	142MT3E05	142MT3E05							
Credits		5							
Hours / Cycle			6						
Category		I	Elective						
Semester	I								
Year of Implementation	AY 2014-15								
Course Structure	Theory	Tutorial	Practic	al To	otal Hours				
Course Objectives:	To learn the f To understand To assimilate	oundations o l lattices and the features o	of Mathem Boolean a of coding	atical logi algebra. theory.	с.				
Course Outcome(s)	PSO Addressed	Blo	om's Tax (K1	conomy I to K6)	Levels				
CO1: Recall various logical									
connectives, rules of inferences,	PSO1, PSO2,								
different types of lattices.	PSO3, PSO6,			K1					
Understand the concept of Boolean	PSO7								
algebra and coding theory.									
CO2: Compare different types of									
statements, quantifiers and lattices.									
Examine various properties of Reclean algebras, Disgues the	PSO1, PSO2, PSO3 PSO6]	K2					
relevance of coding theory and	1000,1000								
information theory.									
CO3: Illustrate equivalence of									
formulas, different normal form,									
inference theory, predicate calculus,	PSO1, PSO2,	PSO1, PSO2,							
Boolean functions, algebraic	PSO3, PSO4, PSO6	PSO3, PSO4, K3							
properties of lattices, encryption and	1000								
decryption of different codes.									
CO4: Investigate tautology	,								
contradiction, validity of formulas	,								
predicate calculus, different lattice	^S PSO3, PSO4,								
and Boolean algebra. Analyze block	C PSO5, PSO6,		1	K4					
codes, variable length codes and	PSO7								
information theory.									
CO5: Evaluate different statemen	t								
formulas and determine properties o	f PSO1, PSO2,								
lattices and Boolean algebras. Justif	PSO3, PSO4,			К5					
the use of codes in information	PSO5, PSO6, PSO7								
theory.									
	Syllabus	s:							
UnitContentHoursCOsBloom									
					Taxonomy				
					Level				

Ι	Mathematical Logic: Statements and Notation –		CO1,	
	Connectives – Normal Forms.	18	CO2,	K1, K2, K3,
	Chapter 1: Section 1.1 – 1.3 (Section 1.2: Omit 1.2.5,		CO3, CO4,	K4, K5
	1.2.12-1.2.15)		CO5	
II	Mathematical Logic: The Theory of Inference for the		CO1.	
	Statement Calculus – The Predicate Calculus – Inference	16	CO2,	K1 K2 K3
	Theory of the Predicate Calculus.	10	CO3,	K4, K5
	Chapter 1: Sections 1.4 – 1.6		CO4, CO5	,
II	Lattice and Boolean Algebra: Lattices as Partial Ordered		CO1,	
	sets – Boolean Algebra – Boolean Functions –	20	CO2,	K1. K2. K3.
	Representation and Minimization of Boolean Functions.	_0	CO3,	K4. K5
	Chapter 4: Sections 4.1 – 4.4		CO4, CO5	,
IV	Coding Theory:		CO1,	
	Error-Correcting Codes – Linear Codes.	18	CO2,	K1, K2, K3,
	Chapter 11: Sections 11.1.11.2		CO3, CO4.	K4, K5
			CO5	
V	Coding Theory: Variable Length and Hamilton Codes -		CO1,	
	Information Theory.	18	CO2,	K1, K2, K3,
	Chapter 11: Sections 11 3 11 4		CO3, CO4,	K4, K5
			CO5	
Pre	scribed textbook(s)			
1.	J.P. Tremblay, R. Manohar, Discrete Mathematical Structure	s with Ap	plications	to Computer
	Science, Tata McGraw-Hill Education Pvt Ltd., New Delhi, 19	אין (For U	Inits 1,2,3	
2.	J. Truss, Discrete Mathematics for Computer Scientists, Sec	ond Editio	on, Pearso	on Education,
D . (1998. (For Units 4,5).			
	T Vegrarian Discrete Mathematics with Graph Theory and (Combinato	rice Tata	McGrow Hill
1.	Computer Science Series 2007	Compinan	nics, 1 ata	Weoffaw-Filli
2	CL Liu Elements of Discrete Mathematics Second Editic	n Tata N	IcGraw-H	Till Computer
2.	Science Series 1986)11, 1 ata 10		ini computer
3	MK Venkataraman NSridharan and NChandrasekaran Di	s cr ete Mat	hematics	The National
5.	Publishing Company, 2011.		inennaties,	
Sug	gested Readings:			
1.	B. Kolman, R. Busby, S.C. Ross, Discrete Mathematical Struc	ctures, Fift	h edition,	Prentice-Hall
	of India, 2005	,	,	
2.	N.L. Bigs, Codes: An introduction to Information Communic	ation and	Cryptogra	phy, Springer,
	2008			
3.	J.H.V. Lint, Introduction to Coding Theory, Third edition, Spi	ringer, 200	4	
We	b resources:			
1.	http://cectl.ac.in/images/pdf_docs/studymaterial/cse/s3/dcs4.p	<u>df</u>		
2.	https://home.iitk.ac.in/%7Earlal/book/mth202.pdf			
3.	https://nptel.ac.in/courses/106108227			
4.	https://archive.nptel.ac.in/courses/108/104/108104092/			

Course Articulation Matrix															
		Programme Outcomes								Programme Specific Outcomes					
Co	PO	PO	РО	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	02	03	04	05	06	07	
CO 1	3	3	3	-	-	1	1	3	3	3	-	-	1	1	K1
CO 2	3	2	3	-	-	3	-	3	2	3	-	-	3	-	K2
CO 3	3	2	3	2	-	3	-	3	2	3	2	-	3	-	K3
CO 4	-	-	3	2	3	2	3	-	-	3	2	3	2	3	K4
CO 5	2	2	3	3	3	3	3	2	2	3	3	3	3	3	K5
Avg.	2.75	2.25	3	2.33	3	2.4	2.33	2.75	2.25	3	2.33	3	2.4	2.33	
	2.58										2.58				

Course title:	Mathematical Statistics								
Course Code	142MT3E04								
Credits			4						
Hours / Cycle	5								
Category	Core								
Semester									
Year of Implementation	AY 2024-25		Deve etter						
Course Structure	Theory	Tutorial	Practica l	Total Hours					
Course Objectives:	To understand functions of random variables, prob distributions, tests of hypothesis, theory of estimation inference.								
Course Outcome(s)	PSO Bloom's Taxonomy Levels Addressed (K1 to K6)								
CO1: Recall the concepts related to random variable, functions of a random variable, probability distributions, sampling, estimators of a population parameter, testing of hypothesis.	PSO 1	К1							
CO2: Examine the properties of mathematical expectation, variance, generating functions, probability distributions, sampling distributions, optimum tests of hypothesis	PSO 1, PSO 2	K2							
CO3: To solve problems based on random variables, test of significance, methods of estimation, optimum test of hypothesis	PSO 1, PSO 2		К3						
CO4: To differentiate between the generating functions, analyse results related to convergence in probability, exact sampling distributions, bounds for estimators	PSO 3	К4							
CO5: To develop a framework for testing of hypothesis, design optimum tests under different conditions	PSO 4	K5							

	Syllabus:			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	 Random Variables and Distribution Functions: Introduction – Distribution function – Discrete Random Variable – Continuous Random Variable. Mathematical Expectation: Introduction – Mathematical Expectation of a Random Variable – Expected Value of Function of a Random Variable – Properties of Expectation – Properties of Variance – Covariance. Chapter 5: Sections 5.1 – 5.4 Chapter 6: Sections 6.1 – 6.6 	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
Π	Generating Functions and Law of Large Numbers: Moment Generating function – Cumulants – Characteristic Function – Some Important Theorems – Chebychev's Inequality – Convergence in Probability – Weak Law of Large Numbers – Borel Cantelli Lemma.ProbabilityDistributions: Rectangular Distribution – Beta Distribution of First Kind – Beta Distribution of Second Kind – Exponential DistributionChapter 7: Sections 7.1 – 7.8 Chapter 9: Sections 9.3, 9.5 - 9.8	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	Large Sample Theory: Introduction – Types of Sampling – Parameter and Statistic – Test of Significance – Procedure for Testing of Hypothesis – Tests of Significance of Large Samples – Sampling of Attributes - Sampling of Variables. Chapter 14	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Theory of Estimation: Introduction – Characteristics of Estimators – Cramer Rao	15	CO1	K1

Ine	equality – Methods of Estimation – Confidence		CO2	K2
Int	erval and Confidence Limits.		CO3	K3
Cha	apter 17: Sections 17.1 – 17.3, 17.6, 17.7		003	КJ
			CO4	K4
			CO5	K5
V Te	sting of Hypothesis: Introduction – Statistical		CO1	K1
Ну	pothesis – Steps in Solving Testing of		CO2	
Ну	pothesis Problem – Optimum Test under			K 2
Di	fferent Situations – Neymann and Pearson	15	CO3	K3
Le	mma –Likelihood Ratio Test.		CO4	
Ch	napter 18: Sections 18.1 – 18.5, 18.6.1, 18.6.2		001	K4
			CO5	K5
Prescribed	l textbook(s)			
S.C. Gupt SultanCha	a and V.K. Kapoor, Fundamentals of Mathematical and & Sons, New Delhi, June 2002 books for further reading:	Statistics	s, Eleventh	n Edition,
1. M. Fis	z, Probability and Mathematical Statistics, John Wild	ey and So	ns, New Y	ork, 1963
2. V.K.F Easter	Rohatgi, An Introduction to Probability Theory and M nLtd., New Delhi, 1988.	athematic	al Statistic	es, Wiley
3. R.V. I Pearso	Hogg and A.T. Craig, Introduction to Mathematic onEducation Ltd., New Delhi, 2002	al Statisti	cs, Fifth l	Edition,
4. A.M. I Edition	Mood, F.A. Graybill and D.C. Boes, Introduction to th n,Mc-Graw Hill, Singapore, 1974	e Theory	of Statistic	cs, Third
Web resou	irces:			
1. <u>htt</u>	os://ocw.mit.edu/courses/18-655-mathematical-sta	tistics-spi	ring-	
$\frac{201}{2}$	<u>o/pages/lecture-notes/</u> ps://archive.nptal.ac.in/courses/111/105/111105041	1		
∠. <u>1</u> 111	ys.//archive.hptel.ac.hl/courses/111/105/111105041			

3. https://archive.nptel.ac.in/courses/111/105/111105043/

Course Articulation Matrix															
Со	Prog	ramme	Outco	mes				Prog		К					
	РО	РО	РО	РО	РО	РО	РО	PS	PS	Level					
	1	2	3	4	5	6	7	01	02	03	04	05	06	07	
CO 1	3	1	1	1	2	1	2	3	1	1	1	2	1	2	K1
CO 2	3	3	2	1	1	1	2	3	3	2	1	1	1	2	K2
CO 3	3	3	2	1	1	1	2	3	3	2	1	1	1	2	K3
CO 4	1	2	3	2	1	2	2	1	2	3	2	1	2	2	K4
CO 5	1	2	1	3	1	1	2	1	2	1	3	1	1	2	K5
Avg.	2.2	2.2	1.8	1.6	1.2	1.2	2	2.2	2.2	1.8	1.6	1.2	1.2	2	

Cours	e title:	Computation	al Geometr	у							
Cours	e Code	142MT3E04									
Credit	ts	4									
Hours	s / Cycle	5									
Categ	ory	Elective									
Semes	ster	III									
Year of	of Implementation	AY 2024-25		-							
Cours	e Structure	Theory	Tutorial	Practic	al To	otal Hours					
Cours	e Objectives:	To equip the s	student with l solve real lif	knowledge Fe problem	e about al ns of geor	gorithms that netric nature.					
Cours	e Outcome(s)	PSO Addressed	Blo	om's Tax (K1	konomy I to K6)	Levels					
CO1: data st of com triangu meshe	Recall concepts of algorithms, ructures, application domains putational geometry, polygon Ilations, Voronoi diagrams and s		К1								
CO2: such as interse lists, m triangu degene algorit	Explain geometrical concepts s convex hulls, line segment ection, doubly connected edge nonotone polygons, Delaunay lations and quadtrees. Explain eracies and robustness of hms.	<u>x</u> n									
CO3: algorith doubly diagram	Apply the knowledge of hms to compute convex hulls, connected edge lists, Voronoi ms, meshes etc.]	K3						
CO4: algoriti proper connec polygo quadtr	Analyse running time of hms used. Identify geometric ties of convex hulls, doubly cted edge lists, monotone ns, Delaunay triangulations and ees.	K4									
CO5: J algorit the alg degene	Justify the correctness of the hms used. Assess and improve orithms by addressing their eracies and robustness.	K5									
		Syllabus	S:								
Unit	Conte	ent		Hours	COs	Bloom's Taxonomy Level					
Ι	Line Segment Intersection: An I Degeneracies and Robustness – Segment Intersection – The Dou	Example: Convex Application Dor Ibly-Connected I	: Hulls – nains – Line Edge List –	15	CO1, CO2, CO3,	K1,K2,K3,K 4,K5					

	Computing the Overlay of Two Subdivisions – Boolean		CO4,					
	Operations.		CO5					
	Chapter 1: Sections 1.1 – 1.3, Chapter 2: Sections 2.1 – 2.4							
II	Polygon Triangulation: Guarding and Triangulations –		CO1,					
	Triangulating a Monotone Polygon.		CO2,					
	Chapter 3: Sections 3.1 – 3.3	15	CO3,	K1,K2,K3,K				
			CO4,	4,K5				
			CO5					
III	Voronoi Diagrams: Definition and Basic Properties –		CO1,					
	Computing the Voronoi Diagram – Voronoi Diagram of Line Segments.		CO2,					
	Chapter 7: Sections 7.1 – 7.3	15	CO3,	K1,K2,K3,K				
			CO4,	4 ,K 5				
			CO5					
IV	Delaunay Triangulations: Triangulations of Planar Point Sets – The Delaunay Triangulation – Computing the Delaunay Triangulation. Chapter 9: Sections 9.1 – 9.3	15	CO1, CO2, CO3, CO4,	K1,K2,K3,K 4,K5				
			CO5					
v	Quadtrees: Uniform and Non-Uniform Mesnes – Quadtrees for Point Sets – From Quadtrees to Meshes. Chapter 14: Sections 14.1 – 14.3		CO2,					
		15	СО3,	K1,K2,K3,K 4,K5				
			CO4,					
			CO5					
Presci	ribed textbook(s)							
Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars, Computational Geometry –								
Reference books for further reading:								
1. F.P. Preparata and M.I. Shamos, Computational Geometry – An Introduction, Springer								
International Edition, 1985								
2.	J. O'Rourke, Computational Geometry in C, Second Edition, C	Cambridge	University	Press, 1997				

Web resources:

Course	Course Articulation Matrix														
Со	Progr	amme (Outcom	nes				Progr		К					
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	O 1	O 2	O 3	O 4	O 5	O 6	Ο7	
CO 1	1 3 2 3 2 1 1 3 3 2 3 2 1 1 3 K										K1				
CO 2	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K2
CO 3	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K3
CO 4	3	2	3	2	1	1	3	3	2	3	2	1	1	3	K4
CO 5	5 3 2 3 2 1 1 3 3 2 3 2 1 1 3										K5				
Avg.	3	2	3	2	1	1	3	3	2	3	2	1	1	3	

Course title:	COMPLEX ANALYSIS -II							
Course Code	142MT4M01							
Credits	5							
Hours / Cycle			6					
Category			Elective					
Semester			IV					
Year of Implementation		Α	Y 2014-15	Γ				
Course Structure	Theory	Tutorial	Practical	Total Hours				
Course Objectives:	To study s analyze its advanced stu	pecific co applicati dies in Co	omplex-valu ons enabli mplex Anal	led functions and ng directions for ysis.				
Course Outcome(s)	PSO Addressed	PSO Bloom's Taxonomy Levels (K1 to K6)						
CO1: Recall product development of zeta function extending it to the whole complex plane, boundary behavior of analytic function functions, simply and doubly periodic functions. Remember conformal mapping and analytic continuation.	PSO1 PSO3 PSO4 PSO5 PSO6 PSO7			K1				
CO2 Examine the functional equations, zeros of zeta function, behaviour at an angle and representation of periodic functions by exponentials. Explain Weierstrass theory of analytic functions, germs and sheafs.	PSO1 PSO2 PSO5 PSO6 PSO7	O1 O2 O5 O6 O7 K2						
CO3: Apply Arzela's theorem to analytic functions. Illustrate mean value	PSO1 PSO2		K	3				

properties of harmonic functions along with unimodular transformation. Classify functions (z) , $\sigma(z)$ and homotopy of curves.	PSO3 PSO5 PSO6 PSO7	
CO4: Analyze equicontinuity on normal families and harmonic functions. Categorize general properties of elliptic functions, conformal mapping by $\lambda(\tau)$ and sections of Riemann surfaces.	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7	К4
CO5: Evaluate the classical definitions, the period module, differential equations of Weierstrass and construct proof of Riemann Mapping theorem and Monodromy theorem.	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7	К5

	Syllabus:			
Unit	Content	Hours	COs	Bloom's
				Taxonomy Level
Ι	Riemann Zeta Function : Product Development – Extension of $\zeta(s)$ to the Whole Plane – The Functional Equation – The Zeros of the Zeta Function. Normal Families : Equicontinuity – Normality and Compactness – Arzela's Theorem – Families of Analytic Functions – The Classical Definition. Chapter 5: Sections 4, 5	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
II	The Riemann Mapping Theorem: Statement and Proof –Boundary Behaviour – Use of the Reflection Principle.A Closer Look at Harmonic Functions: Functions with Mean-Value Property – Harnack's Principle.	18	CO1 CO2 CO3 CO4	K1 K2 K3

	Chapter 6: Sections 1, 2, 3 (Section 1: Omit 1.4, Section 2: Omit 2.4)		CO5	K4 K5
III	 Simply Periodic Functions: Representation by Exponentials – The Fourier Development – Functions of Finite Order. Doubly Periodic Functions: The Period Module – Unimodular Transformations – The Canonical Basis – General Properties of Elliptic Functions. Chapter 7: Sections 1, 2 	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Weierstrass Theory : The Weierstrass p -functions – The functions $\zeta(z)$ and $\sigma(z)$ – The Differential Equation – Chapter 7: Section 3.1 – 3.3	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
V	Analytic Continuation: The Weirstrass Theory – Germs and Sheaves – Sections and Riemann Surfaces – Analytic Continuations along Arcs – Homotopic Curves – The Monodromy Theorem – Branch Points. Chapter 8: Section 1	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

Prescribed textbook(s)

L. V. Ahlfors, Complex Analysis, Third Edition, McGraw-Hill Book Company, New Delhi, 1979.

Reference books for further reading:

1. S. Ponnusamy, Foundations of Complex Analysis, Second Edition, Narosa Publishing Company, 2005.

2. S. Kumaresan, A Pathway to Complex Analysis, First Edition, Techno World, 2021.

3. J.B. Conway, Functions of One Complex Variable, Second Edition, Narosa Publishing House, New Delhi, 1978.

Suggested books for further reading:

1. R. Remmert, Theory of Complex Functions, Springer International Edition, 1991.

2. T. W. Gamelin, Complex Analysis, Springer International Edition, Springer-Verlag, New York Inc., 2001.

3. S.Lang, Complex Analysis, Third Edition, Springer, 1993.

Web resources:

https://archive.nptel.ac.in/courses/111/106/111106084/ https://ocw.mit.edu/courses/18-112-functions-of-a-complex-variable-fall-2008/pages/lecture-notes/ https://www.youtube.com/watch?v=EyBDtUtyshk

Course	Course Articulation Matrix														
Со	Co Programme Outcomes Programme Specific Outcomes												K		
	РО	PO	РО	РО	РО	РО	PO	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	O 2	O 3	O 4	O 5	O 6	O 7	
CO 1	3	-	2	1	2	2	1	3	-	2	1	2	2	1	K1
CO 2	3	2	-	-	1	1	2	3	2	-	-	1	1	2	K2

CO 3	3	1	3	1	1	1	1	3	1	3	1	1	1	1	K3
CO 4	2	3	3	1	1	2	2	2	3	3	1	1	2	2	K4
CO 5	3	2	3	1	1	3	2	3	2	3	1	1	3	2	K5
Avg.	2.8	2	2.75	1	1.2	1.8	1.6	2.8	2	2.75	1	1.2	1.8	1.6	
Avg.				1.593				1.593							

Course title:	DIFFERENTIAL GEOMETRY							
Course Code		142MT4M02						
Credits	4							
Hours / Cycle		6						
Category		Core						
Semester	IV							
Year of Implementation	AY 2014-15							
Course Structure	Theory	Practical	Total Hours					
course Structure	90	-	90					

Course Objectives:	To introduce and surfaces of surfaces a with	introduce the local and global properties of curves I surfaces. To study the first two fundamental forms urfaces and their relevance to local properties along with the notion of geodesics on a surface				
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)				
CO1 : Recall the notion of curvature of curves and surfaces along with the first and second fundamental forms and the notion of geodesic on a surface	PSO1 PSO2 PSO3 PSO6 PSO7	K1				
CO2 : Explain the properties of various curves and surfaces	PSO1 PSO2 PSO3 PSO6 PSO7	К2				
CO3: Apply the fundamental notions to classify different measures such as curvature, torsion, fundamental forms for curves and surfaces and to illustrate the concept of geodesic on a surface	PSO1 PSO2 PSO3 PSO6 PSO7	K3				
CO4: Analyse curves and surfaces using their fundamental forms and	PSO1 PSO2 PSO3	К4				

to investigate the properties of geodesics	PSO4 PSO6 PSO7	
CO5: Assess the nature of curves and surfaces along with properties of geodesics on surfaces	PSO1 PSO2 PSO3 PSO4 PSO6 PSO7	K5

	DIFFERENTIAL GEOMETRY Syllabus:										
Unit	Content	Hours	Cos	Bloom's Taxonomy Level							
I	Curves: Curve – Arc-length – Reparametrization. Curvature: Curvature – Plane Curves – Space Curves. Chapter 1: Sections 1.1 – 1.3, Chapter 2: Sections 2.1 – 2.3	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5							
II	Surfaces: Surface – Smooth Surfaces – Tangents, Normals and Orientability – Examples of Surfaces – Quadric Surfaces – Triply Orthogonal Systems. Chapter 4: Sections 4.1 – 4.6	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5							
111	First Fundamental Form: Lengths of Curves on Surfaces – Isometries of Surfaces – Conformal Mappings of Surfaces Chapter 5: Sections 5.1 – 5.4	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5							
IV	Curvature of Surfaces: The Second Fundamental Form – The Curvature of Curves on Surfaces – The Normal and Principal Curvatures Chapter 6: Sections 6.1 – 6.4,	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5							
V	Gaussian Curvature Gaussian and Mean Curvatures Geodesics Definition and Basic Properties – Geodesic Equations – Geodesics on Surfaces of Revolution Chapter 7: Section 7.1 Chapter 8: Sections 8.1 – 8.3	18	CO1 CO2 CO3 CO4	K1,K2,K3, K4,K5							
	Prescribed textbook(s): Andrew Pressley, Elementary Differential Geometry, Sp Mathematics Series, Springer, 200	oringer Un 1.	dergradı	Jate							

	Reference books :							
1.	T. J. Wilmore, An Introduction to Differential Geometry, Oxford University Press,							
	New Delhi, 1959							
2.	W. Klingenberg, A Course in Differential Geometry, Graduate Texts in							
	Mathematics, Springer-Verlag 1978							
3.	J.A. Thorpe, Elementary Topics in Differential Geometry, Under Graduate Texts							
	in Mathematics, Springer-Verlag 1979							
	Suggested books for further reading							
1.	D. Somasundaram, Differential Geometry – A First Course, Narosa Publishing							
	House, 2005							
2.	Kristopher Tapp, Differential Geometry of Curves and Surfaces, Springer							
	International Publishing Switzerland, 2016							
3.	https://press.princeton.edu/books/ebook/9780691219899/visual-differential-geometry-							
	and-forms (e-book)							
	Web resources:							
	https://ocw.mit.edu/courses/18-950-differential-geometry-fall-2008/							
	https://nptel.ac.in/courses/111104095							

	DIFFERENTIAL GEOMETRY Course Articulation Matrix														
Со	Programme Outcomes								Programme Specific Outcomes						К
	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	0 2	03	04	05	06	07	
CO 1	3	2	1	-	-	1	2	3	2	1	-	-	1	2	K1
CO 2	3	2	2	-	-	2	3	3	2	2	-	-	2	3	K2
CO 3	3	2	2	-	-	2	2	3	2	2	-	-	2	2	К3
CO 4	2	1	3	2	-	2	2	2	1	3	2	-	2	2	К4
CO 5	1	2	1	2	-	2	3	1	2	1	2	-	2	3	K5
Avg.	2.4	1.8	1.6	2	-	1.8	2.4	2.4	1.8	1.6	2	-	1.8	2.4	
				2				2							

Course title:	FUNCTIONAL ANALYSIS						
Course Code	142MT4M03						
Credits		5					
Hours / Cycle		6					
Category		Core					
Semester		IV					
Year of Implementation		AY 2014-15					
Course Stranstorme	Theory	Practical	Total Hours				
Course Structure	90	-	90				
Course Objectives:							
Course Outcome(s)	PSO Addressed	Bloom's 1	Taxonomy Level				
CO1: Recall basic concepts such as	PSO1						
normed linear Spaces, Linear	PSO3	K	1				
operators, conjugate space, Banach	PSO6						
algebra and commutative Banach	PSO7						
algebras.							
CO2: Examine the properties of	PSO1						
continuous linear operators,	PSO3						
orthogonal complements and adjoint	PSO6	K	2				
of an	PSO7						
operator. Explain regular elements and							
	DCO.						
CO3: Illustrate Hann-Banach	PSO1	V					
conjugate of Hilbert spaces. Classify	PS02	n <u>-</u>	3				
topological	P303						
divisors of zero and involutions in	PSO6						
Banach algebras.	PSO7						
CO4: Analyse second dual normed							
linear spaces, orthonormal sets	PSO						
and self-adjoint operators.	PS06	K	1				
Investigate singular elements and	PSO7						
involutions in Banach algebras.	,						
CO5: Assess the nature of a space	PSO1						
and operators– Banach or Hilbert	PSO ₂						
space, normal or unitary operators.	PSO ₃	K	5				
construct a formula for the spectral	PSO6						
Noumark	PSO7						
Theorem							

Unit	Content	Hours	Cos	Bloom's Taxonomy
I	Banach Spaces: The Definition and Some Examples – Continuous Linear Transformations – The Hahn-Banach Theorem – The Natural Embedding of <i>N</i> in <i>N</i> **. Chapter 9: Sections 46 – 49	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
II	The Open Mapping Theorem – The Conjugate of an Operator. Hilbert Spaces: The Definition and Simple Properties – Orthogonal Complements – Orthonormal Sets. Chapter 9: Sections 50, 51 Chapter 10: Sections 52 – 54	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	The Conjugate Space <i>H</i> * – The Adjoint of an Operator – Self-Adjoint Operators – Normal and Unitary Operators – Projections. Chapter 10: Sections 55 – 59	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	General Preliminaries on Banach Algebras: The Definition and some Examples – Regular and Singular Elements – Topological Divisors of Zero – The Spectrum – The Formula for Spectral Radius – The Radical and Semi- Simplicity.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
	Chapter 12: Sections 64 – 69			
V	The Structure of Commutative Banach Algebras: The Gelfand Mapping – Applications of the Formula $r(x) = \lim_{n \to \infty} x^n _n$ – Involutions in Banach Algebras – Gelfand- Neumark Theorem. Chapter 13: Sections 70 – 73	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
G.F. S	Prescribed textbook(s) Simmons, Introduction to Topology and Modern Analysis, Mo Delhi. 1963	Graw-Hill I	Education	Pvt. Ltd., New

	Reference books:							
1.	M. Thamban Nair, Functional Analysis, A First Course, Prentice Hall of India Pvt. Ltd., New							
	Delhi, 2002							
2.	H.C. Goffman and G. Fedrick, First Course in Functional Analysis, Prentice Hall of India Pvt.							
	Ltd., New Delhi, 1987							
3.	E. Kreyzig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York,							
	1978							
4.	S. Ponnusamy, Foundations of Functional Analysis, Narosa Publishing House Pvt. Ltd.,							
	New Delhi, 2002							
5.	S.Kumaresan, D.Sukumar, Functional Analysis, A first course, Narosa Publishing House.							
	Suggested books for further readings:							
1.	W. Rudin, Functional Analysis, Tata McGraw-Hill Publishing Company Ltd., New							
	Delhi 1973.							
2.	S. Kesavan, Topics in Functional Analysis and Applications, Wiley Eastern Ltd., New							
	Delhi, 1988.							
3.	B.V. Limaye, Functional Analysis, Second Edition, New Age International Pvt. Ltd,							
	1997.							
	Web resources:							
1.	https://nptel.ac.in/courses/111106147							
2.	https://ocw.mit.edu/courses/18-102-introduction-to-functional-analysis-							
	<u>spring- 2021/video_galleries/lecture-videos/</u>							
3.	https://onlinecourses.swayam2.ac.in/cec23_ma24/preview							

FUNCTIONAL ANALYSIS Course Articulation Matrix															
CO	Programme Outcomes Programme Specific Outcomes									К					
	РО	РО	РО	РО	РО	PO	РО	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	0 2	03	04	05	06	07	
CO 1	3	-	3	-	-	3	3	3	-	3	-	-	3	3	K1
CO 2	3	-	1	-	-	3	3	3	-	1	-	-	3	3	K2

CO 3	3	3	3	-	-	3	3	3	3	3	-	-	3	3	Кз
CO 4	3	3	-	-	-	3	3	3	3	-	-	-	3	3	К4
CO 5	3	3	3	-	-	3	3	3	3	3	-	-	3	3	K5
Avg.	3	3	2.5	-	-	3	3	3	3	2.5	-	-	3	3	
Avg.		2.9						2.9							

Course title:	Fluid Dynam	nics								
Course Code	142MT4E04									
Credits	4									
Hours / Cycle	5									
Category	Elective									
Semester	IV									
Year of Implementation	AY 2014-15									
Course Statute	Theory	Tutorial	Practical	Total Hours						
Course structure	75			75						
Course Obientimes	To gain Know	wledge on the	e behaviour	of Fluids,						
Course Objectives:	equations of i	motion of flui	ids and 2D 3	D flows						
	equations of		ab and 20,0							
	PSO	Blog	om's Taxon	omy Levels						
Course Outcome(s)	Addressed		(K1 to H	K6)						
CO1 · Recall the concepts of	PSO1.		× • • • • • • • • • • • • • • • • • • •	,						
streamlines, pathlines, pressure of a	PSO3.									
fluid, sources, sinks, doublets, stream	PSO6,		K 1							
functions and stress in a Real fluid.	PSO7									
CO2 : Compare fluids, various types	PSO1,									
of flows and explain velocity	PSO2,									
potentials, Axi-symmetry, Stoke's	PSO6,		K2							
stream function, two dimensional	PSO7									
flows and Laminar flow.										
CO3: Solve problems applying	PSO1,									
equation of continuity, Bernoulli's	PSO2,									
equation, Axi-symmetry, complex	PSO3,		K3							
velocity potentials and Navier-Stokes	PSO6,									
equation of motion.	PS07									
CO4: Catagoriza Local and partials										
rates of change and motion under										
conservative body forces. Investigate	PSO1,									
various cases of axi-symmetric flows	PSO2,		К4							
Stoke's stream function, complex	PSO6,									
velocity potentials for 2D-flow, Rate	PSO7									
of strain and principal stresses.										
CO5: Evaluate the equation of										
continuity, Bernoulli's equation,	PSO1,									
velocity potential for sources, sinks	PSO2,		K5							
and doublets, problems on axi-	PSO6		13							
symmetric flows, Milne-Thomson	PSO7									
circle, and viscous flow.	1007									

	Syllabus:			
Unit	Content	Hours	COs	Bloom's Taxonomy
				Level
Ι	 Kinematics of Fluids in Motion : Real Fluids and Ideal Fluids-Velocity of a Fluid at a point – Streamlines and Pathlines; Steady and Unsteady Flows – The Velocity Potential- The Velocity Vector – Local and Particle Rates of Changes- The Equation of Continuity-Worked Examples-Acceleration of a Fluid-Conditions at a Rigid Boundary. Chapter 2: Sections 2.1-2.10 	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Equations of Motion of a Fluid : Pressure at a Point in a Fluid at Rest- Pressure at a point in a Moving Fluid- Conditions of a Boundary of Two Inviscid Immiscible Fluids - Euler's Equations of Motions – Bernoulli's Equation -Worked Examples-Discussion of the Case of Steady Motion under Conservation Body Forces – Some Flows Involving Axial symmetry- Some Further Aspects of Vortex Motion. Chapter 3 : Sections 3.1-3.7, 3.9,3.12	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Some Three Dimensional Flows : Introduction- Sources, Sinks and Doublets-Images in a Rigid Infinite Plane- Axi-Symmetric Flows; Stoke's Stream Function. Chapter 4 : Sections 4.1-4.3, 4.5	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	 Some Two Dimensional Flows : Meaning of Two- Dimensional Flow- Use of Cylindrical Polar Coordinates – The Stream Function- The Complex Potential for Two-Dimensional Irrotational, Incompressible Flow -Complex Velocity Potentials for Standard Two-Dimensional Flows- Some Worked Examples- The Milne-Thomson Circle Theorem -The Theorem of Blasius. Chapter 5: Sections 5.1-5.6, 5.8,5.9 	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
r		1	1	
--------	---	--------------	-------------------------------------	--------------------------------
V	Viscous Flow : Stress Components in a Real Fluid- Relations between Cartesian Components of Stress– Translational Motion of Fluid Element–The Rate of Strain Quadratic and Principal Stresses -Some Further Properties of the Rate of Strain Quadric-Stress Analysis in Fluid Motion- Relations between Stress and Rate of Strain-The Coefficient of Viscosity and Laminar Flow-The Navier-Stokes Equations of Motion of a Viscous Fluid-Some Solvable Problems in Viscous Flow. Chapter 8: Sections 8.1-8.10	15	CO1, CO2, CO3, CO4, CO5	
Presc	ibed textbook(s)			I
F. Cho	rlton, Text book of Fluid Dynamics, CBS Publishers and I	listributors	s, New De	lhi, 1985
Refere	ence books for further reading:			
1.	S. Swarup, Fluid Dynamics, Krishna Prakashan Media P	/t. Ltd., Me	erut, 197	6.
2.	R. K. Bansal, A textbook of Fluid Mechanics and Hydrau Pvt. Ltd., New Delhi, 1983.	lic Machin	es, Laxm	i Publications
3.	G.K.Batchelor,An Introduction to Fluid Dynamics, Caml Edition.	oridge Mat	hematica	l Library, 2 nd
4.	Yunus A. Cengel, John M. Climbala, Fluid mechanics fur Graw Hill, Fourth edition in SI units.	ndamental	s and App	lications, Mc
5.	R.K.Rajput,A Textbook of Fluid Mechanics, S.Chand, Re	vised Editio	on.	
Web r	esources:			
	1. <u>https://youtu.be/AirfUsq8aSo</u>			
	2. <u>https://www.edx.org/learn/fluid-n</u> institute-of-technology-advanced	echanics/r	nassachu hanics-1-	<u>isetts-</u> fundamentals
	3. https://ocw.mit.edu/courses/2-25	-advanced	-fluid-me	chanics-fall-
	<u>2013/</u>			

Course Articulation Matrix															
Со	Progr	amme	Outco	mes				Prog	ramme	Specif	ic Outo	comes			К
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	PS O 7	Level
CO 1	3	3	1	1	1	3	3	3	1	3	1	1	3	3	K1
CO 2	3	3	1	1	1	3	3	3	3	1	1	1	3	3	K2
CO 3	3	3	1	1	1	3	3	3	3	3	1	1	3	3	K3
CO 4	3	3	1	1	1	3	3	3	3	1	1	1	3	3	K4
CO 5	3	3	1	1	1	3	3	3	3	3	1	1	3	3	K5
Avg.	3	3	1	1	1	3	3	3	2.6	2.2	1	1	3	3	

Course title:	THEORY O	OF COMPU	J TATIO	N				
Course Code	142MT4E05							
Credits			5					
Hours / Cycle			6					
Category			Elective					
Semester			IV					
Year of Implementation		AY 2014-15						
Course Star ature	Theory	Tutorial	Practic	al T	otal Hours			
Course Structure	75				75			
Course Objectives:	To design dif machines. To categorize To distinguis To learn com	ferent variate different g h decidable plexity class	tions and rammar sy and undeo ses.	models of vstems. cidable pr	f Turing oblem.			
Course Outcome(s)	PSO Addressed	Blo	oom's Ta (K1	xonomy to K6)	Levels			
CO1: Recall the basics of computation models, their relationships and relevan definitions.	t PSO1, PSO2, PSO3, PSO4			K1				
CO2: Discuss the relevance of Turing machines and other models.	PSO1, PSO2, PSO3, PSO4, PSO5, PSO6			K2				
CO3: Illustrate different computational systems and compare them. Examine the limits of algorithmic computation and computational complexity.	PSO1, PSO2, PSO3, PSO4, PSO5, PSO6, PSO7		K3					
CO4: Analyse different grammar systems. Investigate various hard problems with its complexity.	PSO1, PSO2, PSO3, PSO4, PSO5, PSO7			K4				
CO5: Construct a hierarchy of formal languages. Compare decidable and undecidable problems and P and NP classes.	PSO1, PSO2, PSO3, PSO4, PSO5, PSO7			K5				
	Syllabus:			[Γ			
Unit Conte	Content							
I Turing Machines: The Sta Combining Turing Machines Turing's Thesis. Chapter 9	Iachine – d Task –	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5				
II Other Models of Turing Ma on the Turing Machine Them More Complex Storage – M	II Other Models of Turing Machines: Minor Variations on the Turing Machine Theme – Turing Machines with More Complex Storage – Non-Deterministic Turing							

			001	[
	Machines – A Universal Turing Machine – Linear		CO4,	
	Bounded Automata.		CO5	
	Chapter 10			
III	A Hierarchy of Formal Languages and Automata:			
	Recursive and Recursively Enumerable Languages –		CO1,	
	Unrestricted Grammars – Context-Sensitive Grammars	18	CO2,	K1, K2, K3,
	and Languages – The Chomsky Hierarchy		CO3,	K4, K5
	and Languages The Ghomsky Therateny.		C04,	
	Chapter 11		005	
IV	Limits of Algorithmic Computation: Some Problems			
	that cannot be Solved by Turing Machines – Undecidable		CO1,	
	Problems for Recursively Enumerable Languages – The	10	CO2,	VI VO V2
	Post Correspondence Problem – Undecidable Problems	10	CO3,	$\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3, \mathbf{K}_4, \mathbf{K}_5$
	for Context-Free Languages – A Question of Efficiency		CO4,	мч, мэ
			CO5	
	Chapter 12			
V	An Overview of Computational Complexity:			
	Efficiency of Computation – Turing Machine Models and			
	Complexity – Language Families and Complexity Classes		CO1,	
	- The Complexity Classes P and NP - Some NP	18	CO2,	K1, K2, K3,
	Problems – Polynomial-Time Reduction – NP-		CO3,	K4, K5
	Completeness and an Open Question.		CO4,	
	sourfrontee and an offer dataset		005	
	Chapter 14			
Presc	ribed textbook(s)			
P. Lin	nz, An Introduction to Formal Languages and Automata, Six	th Edition	, Jones &	Bartlett
Learn	ing, 2017.		-	
Refer	ence books for further reading:			
1. J.	E. Hopcroft and J.D. Ullman, Introduction to Automata The	eory, Langu	lages and	Computation,
N	arosa Publishing House, 1989			
2. M	I. Sipser, Introduction to Theory of Computation, PWS Publ	ishing Cor	mpany, 19	97
Sugg	ested Readings:			
1. D	.C. Kozen, Automata and Computability, Springer, New Yor	rk, 1997.		
2. K	. Krithivasan and R. Rama, Introduction to Formal La	nguages,	Automata	Theory and
С	omputation, Pearson, New Delhi, 2009			
Web	Resources:			
1. <u>ht</u>	tps://ocw.mit.edu/courses/18-404j-theory-of-computation-fal	I-2020/		
2. <u>ht</u>	tps://nptel.ac.in/courses/106104028			
3. <u>ht</u>	tps://nptel.ac.in/courses/106104148			
4. <u>ht</u>	tps://nptel.ac.in/courses/106106242			

						Cours	se Artic	ulatior	n Matri	x					
Ca		Р	rogran	nme O	utcome	es			Progr	amme	Specif	ic Outo	comes		K Level
Co	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	PS O 7	
CO 1	3	2	3	2	-	-	-	3	2	3	2	-	-	-	K1
CO 2	3	3	2	3	1	2	-	3	3	2	3	1	2	-	K2
CO 3	3	3	3	2	2	1	3	3	3	3	2	2	1	3	K3
CO 4	3	2	3	3	3	-	2	3	2	3	3	3	-	2	K4
CO 5	3	3	3	2	2	-	3	3 3 3 2 2 - 3							K5
Avg.	3	2.6	2.8	2.4	2	1.5	2.6	3	2.6	2.8	2.4	2	1.5	2.6	
					2.41										

Course Code142MT4E06Credits4Hours / Cycle5CategoryElectiveSemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:TheoryTutorialCourse Outcome(s)PSO AddressedK1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, structure of fixed point set, Broom structure, of fixed point set, Broom structure, framework spaces, structure of fixed point set, Broom structure, Brower's PSO5PSO1 PSO2 PSO6CO2: Identify Caristi's principle, opperties of hyperconvex spaces, structure of fixed point set, Broom spaces, metric spaces, with uniform normal structure, Brower's psocePSO1 PSO2 PSO5CO3: Identify Caristi's principle, spaces, metric spaces, metric spaces, in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO5CO4: Understand equivalence of Ekcland's principle, fixed point theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO4 PSO4CO4: Understand equivalence of Ekcland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4 PSO3 PSO4CO5: Interpret fixed point theorems for contractive mappings, for contractive mappings,PSO1 PSO2 PSO4 PSO3 PSO4CO5: Interpret fixed point theorems for contractive mappings, for contractive mappings,PSO3 PSO4 PSO3 PSO4CO5: Interpret fixed point theorems for contractive	Course Code142MT4E06Credits4Hours / Cycle5CategoryElectiveSemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:75-Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO4 PSO5CO2 : Demonstrate extensions of Brower's theorem and non- expansive mappings.PSO1 PSO5 PSO5CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2	Course title:	Fixed Point Theory									
Credits 4 Hours / Cycle 5 Category Elective Semester IV Year of Implementation AY 2014-15 Course Structure Theory Tutorial Practical Total Hours Course Objectives: 75 - - 75 Course Objectives: PSO Addressed (K1 to K6) CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction principle, hyperconvex spaces, structure of fixed point set, PSO6 PSO1 K1 PSO2 PSO3 PSO3 K2 Prouver's theorem and non-expansive mappings. PSO1 PSO2 PSO3 CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brower's PSO5 PSO3 K3 PSO5 PSO3 PSO3 PSO3 PSO3 PSO5 PSO4 PSO5 PSO3 PSO3 PSO5 PSO4 PSO5 PSO3 PSO5 PSO5 PSO4 PSO5 PSO5 PSO5 PSO5 CO3: Identify Caristi's principle, PSO5 PSO4 PSO	Credits4Hours / Cycle5CategoryElectiveSemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:75Course Objectives:PSO AddressedCourse Outcome(s)PSO AddressedCourse Outcome(s)PSO AddressedCourse Outcome(s)PSO1 PSO3 PSO4 PSO5Course Outcome(s)PSO1 PSO3 PSO4CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO2 PSO4 PSO5CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO5 PSO5 PSO4 PSO5 PSO5 PSO5 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO5 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	Course Code	142MT4E06									
Hours / Cycle 5 Category Elective Semester IV Year of Implementation AY 2014-15 Course Structure Theory Tutorial Practical Total Hours Course Objectives: 75 - - 75 Course Outcome(s) PSO Addressed Bloom's Taxonomy Levels CO1: Remember Banach contraction principle, hyperconvex spaces, triangulation and contraction mappings. PSO1 PSO4 PSO5 PSO6 K1 CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings. PSO1 PSO1 PSO5 K2 CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l ₁ . PSO1 PSO3 PSO5 K3 CO4: Understand equivalence of Fkeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results. PSO1 PSO3 PSO6 PSO3 K4 CO5: Interpret fixed point theorems for contractive mappings, theorem and stability results. PSO1 PSO3 PSO4 K4	Hours / Cycle5CategoryElectiveSemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:7575Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, triangulation and contraction mappings.PSO1 PSO4 PSO6 PSO7K1CO2 : Demonstrate extensions of Banach contraction principle, Brouver's theorem and non- expansive mappings.PSO1 PSO2 PSO5 PSO5 PSO6 PSO7K2CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouver's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2K3	Credits	4									
CategoryElectiveSemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:7575Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO7K1CO2 : Demonstrate extensions of properties of hyperconvex spaces, mormal structure, Brouwer's properties of radii in metric pSO2 properties of radii in metric pSO3 pso4PSO1 PSO2 PSO7K2CO3: Identify Caristi's principle, pSO6 properties of the space l_1 .PSO1 PSO2 PSO3 PSO4K3CO4: Understand equivalence of Ekcland's principle, fixed point spaces, metric spaces, with uniform properties of the space l_1 .PSO1 	CategoryElectiveSemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:7575Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, triangulation and contraction mappings.PSO1 PSO3 PSO4 PSO6 PSO7CO2: Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO3 PSO3 PSO4 PSO5 PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2	Hours / Cycle	5									
SemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:7575Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, riangulation and contraction properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO1 PSO2 PSO7CO2: Identify Caristi's principle, properties of the space l1.PSO1 PSO2 PSO7K2CO3: Identify Caristi's principle, properties of the space l1.PSO1 PSO2 PSO7K3CO4: Understand equivalence of Ekeland's principle, fixed point spaces, metric spaces, properties of the space l1.PSO1 PSO2 PSO3 PSO4 PSO5CO3: Identify Caristi's principle, properties of the space l1.PSO1 PSO3 PSO4K3CO4: Understand equivalence of Ekeland's principle, fixed point properties of the space l1.PSO1 PSO3 PSO4CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings, PSO4PSO1 PSO4FSO1 PSO3 PSO4	SemesterIVYear of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:7575Course Objectives:PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO5 PSO6 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO5 PSO6 PSO6 PSO7CO3: Identify Caristi's principle, properties of the space l_1 .PSO1 PSO2 PSO5 PSO6 PSO7K3CO4: Understand equivalence of PSO2PSO1 PSO2PSO1 PSO2	Category	Elective									
Year of Implementation AY 2014-15 Course Structure Theory Tutorial Practical Total Hours Course Objectives: 75 - - 75 Course Outcome(s) PSO Addressed Bloom's Taxonomy Levels (K1 to K6) CO1: Remember Banach contraction principle, hyperconvex spaces, triangulation and contraction mappings. PSO1 PSO3 PSO4 PSO4 PSO6 PSO7 K1 CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, resource of fixed point set, Brouwer's theorem and non- expansive mappings. PSO1 PSO1 PSO2 PSO5 K2 CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l ₁ . PSO1 PSO1 PSO3 PSO6 PSO7 K3 CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results. PSO1 PSO5 PSO6 PSO5 PSO6 PSO5 PSO6 PSO5 PSO6 PSO7 K4 CO5: Interpret fixed point theorems for contractive mappings, PSO4 PSO1 PSO2 PSO4 K4	Year of ImplementationAY 2014-15Course StructureTheoryTutorialPracticalTotal HoursCourse Objectives:7575Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction PSO4 properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO5 PSO5 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO5 PSO5CO3: Identify Caristi's principle, properties of the space l_1 .PSO1 PSO6 PSO2CO4: Understand equivalence of PSO2PSO1 PSO2	Semester	IV									
$ \begin{array}{ c c c } \hline \mbox{Tutorial} & \mbox{Tutorial} & \mbox{Pactical} & \mbox{Total Hours} \\ \hline Total Formula Formu$	$\begin{array}{ c c c c c } \hline Theory & Tutorial & Practical & Total Hours \\ \hline 75 & - & - & 75 \\ \hline Course Objectives: & & & & & & \\ \hline \hline Course Outcome(s) & & & & & & & \\ \hline Course Outcome(s) & & & & & & & \\ \hline CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings. & & & & & & \\ \hline CO2: Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non-expansive mappings. & & & & & & \\ \hline CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1. & & & & & & \\ \hline CO4: Understand equivalence of & & & & & \\ \hline CO4: Understand equivalence of & & & & & \\ \hline Tutorial & Tutorial & Tutorial & Total Hours & & & & \\ \hline Tutorial & Tutorial & Tutorial & & & & \\ \hline Tutorial & Tutorial & & & & \\ \hline Tutorial & Tutorial & & & & \\ \hline PSO & & & & & & \\ \hline PSO & & & & & & \\ \hline PSO & & & & & & & \\ \hline PSO & & & & & & & \\ \hline PSO & & & & & & & \\ \hline PSO & & & & & & & \\ \hline PSO & & & & & & \\ \hline PSO & & & & & & & \\ \hline Tutorial & Tutorial & & & & \\ \hline Tutorial & Tutorial & & & & \\ \hline PSO & & & & & \\ \hline PSO & & & & & & \\ \hline PSO & & &$	Year of Implementation	AY 2014-15									
Course Structure7575Course Objectives:Bloom's Taxonomy Levels (K1 to K6)Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction properties of hyperconvex spaces, properties of radii in metric spaces, metric spaces with uniform promal structure, Brouwer's properties of the space l_1 .PSO1 PSO1 PSO2 PSO3 PSO5K2CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's properties of the space l_1 .PSO1 PSO3 PSO3 PSO5K3CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, pSO5PSO1 PSO2 PSO3 PSO6 PSO3 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings, CO5: Interpret fixed point theorems for contractive mappings, PSO4PSO1 PSO3 PSO4	Course Objectives:75-75Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO3 PSO4 PSO6 PSO7CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO3 PSO5 PSO6 PSO7CO3: Understand equivalence of PSO7PSO1 PSO3 PSO5 PSO3 PSO6 PSO7K3 PSO5 PSO6 PSO3 PSO7	Course Star stores	Theory	Tutorial	Practical	Total Hours						
Course Objectives:PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, triangulation and contraction mappings.PSO1 PSO3 PSO3K1CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, PSO6 Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO3 PSO3CO3: Identify Caristi's principle, fiferent types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's PSO5 spaces, metric spaces with uniform normal structure, Brouwer's PSO5 Ekeland's principle, fixed point theorem for hyperconvex spaces, pSO5K3CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO3 PSO5K5	Course Objectives:PSO AddressedBloom's Taxonomy Levels (K1 to K6)Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO5 PSO6 PSO7CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO5 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2	Course Structure	75	-	-	75						
Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO3 PSO4 PSO5CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO5 PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4 PSO5 PSO5 PSO5 PSO5 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO3 PSO3 PSO4 PSO5 PSO6 PSO7	Course Outcome(s)PSO AddressedBloom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO5CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO1 PSO5CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO1 PSO5 PSO5 PSO5 PSO5 PSO5 PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2	Course Objectives:			· · · · ·							
Course Outcome(s)PSOBioom's Taxonomy LevelsCO1: Remember Banach contraction principle, hyperconvex spaces, triangulation and contraction mappings.PSO1 PSO3 PSO4K1CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO5 PSO7K2CO3: Identify Caristi's principle, fifternt types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO3 PSO5 PSO5 PSO7K3CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4 PSO5 PSO5 PSO5 PSO5 PSO5 PSO5 PSO6 PSO7K4CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO5 PSO6 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO5 PSO6 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4 PSO5 PSO6 PSO5 PSO6 PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4 PSO5 PSO4 PSO5 PSO6 PSO5 PSO6 PSO7	Course Outcome(s)PSO AddressedBioom's Taxonomy Levels (K1 to K6)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO5 PSO7CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO2 PSO3 PSO3 PSO3 PSO3 PSO7CO4: Understand equivalence ofPSO1 PSO2		DEO	D 1 -	· · · · · · · · · ·							
CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, PSO4 mappings.PSO1 PSO5 PSO6 PSO7CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO5 PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO5 PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform properties of the space l_1 .PSO1 PSO3 PSO3 PSO4CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO3 PSO3 PSO4CO5: Interpret fixed point theorems for contractive mappings, PSO3PSO3 PSO3 PSO3 PSO3CO5: Interpret fixed point theorems for contractive mappings, PSO3PSO3 PSO3 PSO3 PSO3 PSO3	Addressed(K1 to K0)CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO5 PSO7CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO5CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2	Course Outcome(s)	PSU Addressed	D 100	(K1 to K)	my Levels						
CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction 	CO1: Remember Banach contraction principle, hyperconvex spaces, normal structured metric spaces, triangulation and contraction mappings.PSO1 PSO5 PSO4 PSO7CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO5 PSO5 PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO1 PSO3 PSO5 PSO5 PSO5 PSO5 PSO5 PSO7CO3: Identify Caristing Principle, spaces, metric spaces with uniform normal structure, Brouwer's PSO5 PSO5 PSO5PSO1 PSO3 PSO3 PSO5 PSO5 PSO5 PSO3 PSO5 PSO5 PSO3 PSO5 PSO5 PSO3 PSO5 PSO5 PSO3 PSO5 PSO5 PSO3 PSO5 PSO5 PSO5 PSO5 PSO6 PSO2CO4: Understand equivalence ofPSO1 PSO2		Addressed			.0)						
principle, normal structured metric spaces, triangulation and contraction mappings.PSO3 PSO4 PSO5K1CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO6 PSO7K2CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO7K3CO3: Understand equivalence of Ekeland's principle, fixed point theorem in structure, Schauder's theorem and stability results.PSO1 PSO3 PSO4K4CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings, PSO4PSO1 PSO3 PSO6 PSO6K5	principle,hyperconvexspaces, spaces, PSO4PSO3 PSO4normal structured metric spaces, triangulation and contraction mappings.PSO5K1CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO6CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2CO4: Understand equivalence ofPSO1 PSO2	CO1: Remember Banach contraction	PSOI DSO2									
normal structured metric spaces, triangulation and contraction mappings.PSO4 PSO5K1CO2 : Demonstrate extensions of 	normal structured metric spaces, triangulation and contraction mappings. $\mathbf{PSO4}$ PSO5 PSO6 PSO7K1CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO6 PSO7K2CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO1 PSO3 PSO5 PSO5 PSO5 PSO5 PSO5 K3CO4: Understand equivalence ofPSO1 PSO2	principle, hyperconvex spaces,	PSO3									
triangulationandcontractionPSO3mappings.PSO1CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO3 PSO5CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO3 PSO5CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO3 PSO4CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO3 PSO4	triangulationandcontractionPSO3mappings.PSO6mappings.PSO1CO2 : Demonstrate extensions ofPSO1Banachcontractionprinciple,properties of hyperconvex spaces,PSO5structure offixed point set,Brouwer'stheorem and non-expansive mappings.PSO1CO3: Identify Caristi's principle,PSO2different types of radii in metricPSO3spaces, metric spaces with uniformPSO5normalstructure, Brouwer'stheorem in higher dimensions andPSO7properties of the space l_1 .PSO1CO4: Understand equivalence ofPSO1	normal structured metric spaces,	PSO4		K1							
mappings.PS07CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PS01 PS05CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PS01 PS02 PS03 PS06 PS06 PS07CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PS01 PS03 PS04K4CO5: Interpret fixed point theorems for contractive mappings, PS04PS01 PS03 PS04K5	mappings.PS07 $CO2 : Demonstrate extensions ofBanach contraction principle,properties of hyperconvex spaces,structure of fixed point set,Brouwer's theorem and non-expansive mappings.PS06PS07CO3: Identify Caristi's principle,different types of radii in metricspaces, metric spaces with uniformnormal structure, Brouwer'stheorem in higher dimensions andproperties of the space l_1.PS01PS01PS03PS05PS06PS06PS07CO4: Understand equivalence ofPS01PS02$	triangulation and contraction	PSO6									
CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO5 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO3 PSO6 PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO2 PSO6 PSO6 PSO7K3CO5: Interpret fixed point theorems for contractive mappings, PSO4PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings, PSO4PSO1 PSO3 PSO4K5	CO2 : Demonstrate extensions of Banach contraction principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO6 PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO3 PSO5 PSO6 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	mappings.	PSO7									
Banach properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO7CO3:Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO3 PSO4CO4:Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4K4CO5:Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4K5	Banachcontractionprinciple, propertiespSO1 PSO2 pSO5 pSO5 pSO6 pSO7K2Brouwer'stheoremand non- expansive mappings.PSO1 PSO7 PSO7CO3:Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normalPSO1 PSO2 PSO3 PSO5 PSO5 PSO6 PSO7K3co3:Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normalPSO1 PSO5 PSO6 PSO6 PSO7K3co4:Understand equivalence ofPSO1 PSO2CO4:Understand equivalence ofPSO1 PSO2	CO2 : Demonstrate extensions of										
Dimension of principle, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO5 PSO7K2CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO3 PSO5K3CO4: Understand equivalence of Ekeland's principle, fixed point theorem and stability results.PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings,PSO1 PSO3 PSO4K5	Data End of Contractionprinciple, properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO5 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO3 PSO6 PSO3 PSO5 PSO6 PSO3 PSO5 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	Banach contraction principle	PSO1 PSO2									
properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO6 	properties of hyperconvex spaces, structure of fixed point set, Brouwer's theorem and non- expansive mappings.PSO6 PSO7CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO2 PSO3 PSO6 PSO5CO4: Understand equivalence ofPSO1 PSO2	properties of hyperconvex spaces	PSO5									
Statutile of fixed point set, Brouwer's theorem and non- expansive mappings.PSO1 PSO2 PSO2 PSO3 pSO3 pSO5K3CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's properties of the space l_1 .PSO1 PSO3 PSO6 PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO1 PSO3 PSO4 PSO5CO5: Interpret fixed point theorems for contractive mappings, bmorements of space metric spacesPSO1 PSO3 PSO4	Sindetaileoffixedpointset,fisedBrouwer'stheoremandnon-expansive mappings.PSO1CO3:Identify Caristi's principle,PSO2different types of radii in metricPSO3spaces, metric spaces with uniformPSO5normalstructure,Brouwer'sPSO6theorem in higher dimensions andPSO7properties of the space l_1 .PSO1CO4:Understand equivalence ofPSO2	structure of fixed point set	PSO6	C6 K2								
brower's theorem and non- PSO1 expansive mappings. PSO1 CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 . PSO1 CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results. PSO1 CO5: Interpret fixed point theorems for contractive mappings, PSO3 K5	Biodwer's incorem and non- expansive mappings.PSO1 PSO2 PSO2 PSO3 PSO3 psoces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO3 PSO5 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	Brouwer's theorem and non-	PSO7									
CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO3 PSO6 PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO1 PSO3 PSO4CO5: Interpret fixed point theorems for contractive mappings,PSO3 PSO3 PSO3K5	Expansive inapplings.PSO1CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO1 PSO3 PSO6 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	avpansiva mannings	2001									
CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO3 PSO6 PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings,PSO3 PSO3K5	CO3: Identify Caristi's principle, different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO2 PSO3 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	expansive mappings.	PSO1									
different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO3 PSO6 PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings,PSO3 PSO3 PSO4K5	different types of radii in metric spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO3 PSO6 PSO6 PSO7CO4: Understand equivalence ofPSO1 PSO2	CO3: Identify Caristi's principle,	PSO2									
spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO5 PSO6 PSO7K3CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO1 PSO3 PSO4K4CO5: Interpret fixed point theorems for contractive mappings, heorem and stability results.PSO3 PSO4K5	spaces, metric spaces with uniform normal structure, Brouwer's theorem in higher dimensions and properties of the space l_1 .PSO5 PSO6 PSO7K3CO4: Understand equivalence ofPSO1 PSO2	different types of radii in metric	PSO3									
normalstructure,Brouwer's Brouwer'sPSO6 PSO7theorem in higher dimensions and properties of the space l_1 .PSO1CO4: Understand equivalence of Ekeland's principle, fixed pointPSO2Ekeland's principle, fixed pointPSO3theorem for hyperconvex spaces, uniform normal structure, Schauder'sPSO4K4PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO3FSO3PSO3PSO3K5	normalstructure,Brouwer'sPSO6theorem in higher dimensions and properties of the space l_1 .PSO7CO4: Understand equivalence ofPSO1PSO2	spaces, metric spaces with uniform	PSO5		К3							
theorem in higher dimensions and properties of the space l_1 .PSO7CO4: Understand equivalence of Ekeland's principle, fixed point theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO4K4PSO5CO5: Interpret fixed point theorems for contractive mappings,PSO3K5	theorem in higher dimensions and properties of the space l_1 .PSO7CO4: Understand equivalence ofPSO2	normal structure, Brouwer's	PSO6									
properties of the space l_1 .PSO1CO4: Understand equivalence of Ekeland's principle, fixed pointPSO2Ekeland's principle, fixed pointPSO3theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO4K4PSO6PSO7PSO1CO5: Interpret fixed point theorems for contractive mappings,PSO3PSO3K5	properties of the space l_1 . PSO1 CO4: Understand equivalence of PSO2	theorem in higher dimensions and	PSO7									
PSO1CO4: Understand equivalence ofPSO2Ekeland's principle, fixed pointPSO3theorem for hyperconvex spaces,PSO4uniform normal structure, Schauder'sPSO5theorem and stability results.PSO6PSO7PSO1CO5: Interpret fixed point theoremsPSO2for contractive mappings,PSO3PSO4K5	CO4: Understand equivalence of PSO2	properties of the space l_1 .										
CO4: Understand equivalence of Ekeland's principle, fixed pointPSO2Ekeland's principle, fixed pointPSO3theorem for hyperconvex spaces, uniform normal structure, Schauder'sPSO4K4PSO6PSO7CO5: Interpret fixed point theorems for contractive mappings,PSO3PSO3K5PSO4	CO4: Understand equivalence of PSO2		PSO1									
Ekeland's principle, fixed pointPSO3theorem for hyperconvex spaces,PSO4uniform normal structure, Schauder'sPSO5theorem and stability results.PSO6PSO7PSO1CO5: Interpret fixed point theoremsPSO2for contractive mappings,PSO3PSO4K5		CO4: Understand equivalence of	PSO2									
theorem for hyperconvex spaces, uniform normal structure, Schauder's theorem and stability results.PSO5K4PSO6 PSO7PSO6CO5: Interpret fixed point theorems for contractive mappings,PSO3K5PSO4PSO4	Ekeland's principle, fixed point PSO3	Ekeland's principle, fixed point	PSO3									
uniform normal structure, Schauder's PSO5 theorem and stability results. PSO6 PSO7 PSO1 CO5: Interpret fixed point theorems PSO2 for contractive mappings, PSO3 K5 hpsrconvox spaces matric spaces PSO4	theorem for hyperconvex spaces, PSO4 K4	theorem for hyperconvex spaces,	PSO4		K 4							
theorem and stability results. PSO6 PSO7 CO5: Interpret fixed point theorems for contractive mappings, PSO3 K5 PSO4	uniform normal structure, Schauder's PSO5	uniform normal structure, Schauder's	PSO5									
PSO7CO5: Interpret fixed point theoremsPSO2for contractive mappings,PSO3K5	theorem and stability results. PSO6	theorem and stability results.	PSO6									
CO5: Interpret fixed point theoremsPSO2for contractive mappings,PSO3hperconvex spacesPSO4	PSO/ PSO/		PSO/ PSO1									
for contractive mappings, PSO3 K5	CO5: Interpret fixed point theorems PSO1	CO5: Interpret fixed point theorems	PSO1									
hnoreconvex snaces metric snaces PSO4	for contractive mannings PSO3 K5	for contractive mappings	PSO2		K5							
THE THE AND A THE THE ADDRESS TO MALESS TO MAL	hperconvex spaces metric spaces PSO4	hperconvex spaces metric spaces	PSO4		IX.J							
PSO5	PSO5	nperconvex spaces, metric spaces	PSO5									

with normal structures, Banach	PSO6	
spaces and w-contractive spaces	PSO7	

	Syllabus:			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	Metric Contraction Principles: Banach's Contraction Principle – Further Extensions of Banach's Contraction Principle – The Caristi-Ekeland Principle – Equivalents of Caristi – Ekeland Principle. Chapter 3: Sections 3.1 – 3.4	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
II	 Hyperconvex Spaces: Introduction – Hyperconvexity – Properties of Hyperconvex spaces – A Fixed Point Theorem. Chapter 4: Sections 4.1 – 4.4 	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	Normal Structures in Metric Spaces: A Fixed Point Theorem – Structure of the Fixed Point Set – Uniform Normal Structure – Uniform Relative Normal Structure. Chapter 5: Sections 5.1 – 5.4	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Continuous Mappings in Banach Spaces: Introduction – Brouwer's Theorem – Further Comments on Brouwer's Theorem – Schauder's Theorem. Chapter 7: Sections 7.1 – 7.4	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
V	Metric Fixed Point Theory: Contraction Mappings – Basic Theorems for Nonexpansive Mappings – A Closer Look at <i>l</i> 1 – Stability Results in Arbitrary Spaces. Chapter 8: Sections 8.1 – 8.4	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
Fresci	abed textbook(S)			

1. Mohamed A.Khamsi and William Kirk, An Introduction To Metric Spaces and Fixed Point Theory, John – Wiley & Sons, Inc, 2001.

Reference books for further reading:

1. D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1974.

2. E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed Point Theory, Springer-Verlag, Berlin, 1986.

Suggested books for further reading:

1. S. Singh, B. Watson and P. Srivastava, Fixed Point Theory and Best Approximations: The KKM – map Principle, Kluwer Academic Publishers, 1997.

2. K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

Web resources:

Comprehensive resource is Not Available for this course

Course Articulation Matrix															
Со	Prog	ramme	Outco	mes				Programme Specific Outcomes							K
	РО	PO	PO	PO	PO	PO	PO 7	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6		01	O 2	O 3	O 4	O 5	O 6	O 7	
CO 1	3	-	2	1	2	2	1	3	-	2	1	2	2	1	K1
CO 2	3	2	-	-	1	1	2	3	2	-	-	1	1	2	K2
CO 3	3	1	3	1	1	1	1	3	1	3	1	1	1	1	K3
CO 4	2	3	3	1	1	2	2	2	3	3	1	1	2	2	K4
CO 5	3	2	3	1	1	3	2	3	2	3	1	1	3	2	K5
Avg.	2.8	2	2.75	1	1.2	1.8	1.6	2.8	2	2.75	1	1.2	1.8	1.6	
Avg				1.59	3			1.593							

Course title:	Fuzzy sets and their applications								
Course Code		142MT	4E07						
Credits		4							
Hours / Cycle		5							
Category	Mandatory								
Semester	IV								
Year of Implementation	2014-15								
	Theory	Tutorial	Practical	Total Hours					
Course Structure	75	0	0	75					
Learning Objectives:	To study the fundament	ital concepts	of Fuzzy sub	osets, Fuzzy					
	relations and the Funct	ions of Fuzz	y Variables.						
	PSO	Dla							
Course Outcome(s)	Addressed	D 10	om's Taxon	omy Levels					
CO1: Recall the fundamental									
concepts in set theory and	PSO1, PSO2, PSO4,								
remember the definitions of			K1						
Fuzzy Subsets and Fuzzy	PSO6, PSO7								
Relations.									
CO2: Discuss the									
properties of Set of Fuzzy	DCO1								
Subsets, Fuzzy Binary	PS01,								
Relations and Similitude and	PSO2, PSO3,								
Resemblance relations and	, , ,								
Fuzzy Groupoids. Explain	PSO5, PSO6, PSO7								
the Logical Structure of a									
Function of Fuzzy variables.									
CO3: Solve problems related	PSO1, PSO2, PSO3,								
Relations Europy Variables	PSO4, PSO6,		K3						
and Euzzy Groupoids	PSO7,								
CO4: Applyze the									
Operations on Fuzzy									
Subsets, Composition of									
Fuzzy Relations, Similitude	PSO1,								
Sub-relations in a Fuzzy	DECT DECT DECC		K4						
Preorder, Operations on	PSO2, PSO3, PSO0, PSO7								
Fuzzy Numbers and	1307								
Functions of Fuzzy Variables									
using Method of Marinos.									
CO5: Evaluate problems									
based on the theorems of	PSO1,								
Fuzzy Subsets, Fuzzy			K5						
Relations, Fuzzy Variables	PSO2, PSO3, PSO4,		IX.J						
and the Laws of Fuzzy	PSO6, PSO7								
Composition.									

	Syllabus: Fuzzy Sets and their Applications							
Unit	Content	Hours	COs	Bloom's Taxonomy Level				
Ι	 UNIT I – Fundamental Notions: Introduction – Review of the Notion of Membership – The Concept of a Fuzzy Subset – Dominance Relations – Simple Operations on Fuzzy Subsets – Set of Fuzzy Subsets for E and M Finite – Properties of the Set of Fuzzy Subsets – Product and Algebraic Sum of Two Fuzzy Subsets. Chapter I 	14	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5				
II	 UNIT II - Fuzzy Graphs and Fuzzy Relations: Introduction – Fuzzy Graphs – Fuzzy Relations – Composition of Fuzzy Relations – Fuzzy Subsets Induced by a Mapping – Conditioned Fuzzy Subsets – Properties of Fuzzy Binary Relations – Transitive Closure of a Fuzzy Binary Relation – Paths in a Finite Fuzzy Graph. Chapter II: Sections 10 – 18 	17	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5				
III	 UNIT III - Fuzzy Preorder Relations – Similitude Relations – Similitude Subrelations in a Fuzzy Preorder – Antisymmetry – Fuzzy Order Relations – Antisymmetric Relations without Loops, Ordinal Relations, Ordinal Functions in a Fuzzy Order Relations – Dissimilitude Relations – Resemblance Relations – Various Properties of Similitude and Resemblance – Various Properties of Fuzzy Perfect Order Relations – Ordinary Membership Functions. Chapter II: Sections 19 – 30 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5				
IV	 UNIT IV - Fuzzy Logic: Introduction – Characteristic Function of a Fuzzy Subset. Fuzzy Variables – Polynomial Forms – Analysis of a Function of Fuzzy Variables. Method of Marinos – Logical Structure of a Function of Fuzzy Variables – Composition of Intervals – Fuzzy Propositions and their Functional Representations – The Theory of Fuzzy Subsets and Theory of Probability. Chapter III: Sections 31 – 36, 39, 40 	14	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5				
V	UNIT V - The Laws of Fuzzy Composition: Introduction – Review of the Notion of a Law of Composition – Laws of Fuzzy Internal Composition. Fuzzy Groupoids – Principal Properties of Fuzzy Groupoids.	12	CO1 CO2 CO3 CO4	K1,K2,K3, K4,K5				

– Fuzzy Monoids – Fuzzy External Composition – Operations on Fuzzy Numbers.	CO5	
Chapter IV		

Prescribed Books/Textbook(s)

A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Vol. 1, Academic Press, New York, 1975.

Reference Books

- H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers, Chennai, 1996
- 2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, New Delhi, 2001

Web Resources

- 1. <u>https://onlinecourses.nptel.ac.in/noc22_ee21/preview</u>
- 2. <u>https://www.youtube.com/watch?v=K7S3TgfqnX0&list=PLFW6lRTa1g81F7CJ-CdlsyWKKAa43T62j</u>

Course Articulation Matrix															
Со	Programme Outcomes								Programme Specific Outcomes						
	РО	РО	РО	РО	РО	PO	PO	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6	7	01	O 2	O 3	O 4	O 5	O 6	07	
CO 1	3	3	-	2	-	3	3	3	3	-	2	-	3	3	K1
CO 2	3	2	3	-	1	3	3	3	2	3	-	1	3	3	K2
CO 3	3	1	3	2	-	3	3	3	-	3	2	-	3	3	К3
CO 4	3	2	3	-	-	3	3	3	2	3	-	-	3	3	K4
CO 5	3	1	3	2	-	3	3	3	1	3	2	-	3	3	K5
Avg.	3	1.8	2.4	1.2	0.2	3	3	3	1.8	2.4	1.2	0.2	3	3	
Avg.	2.086								2.086						