B.Sc (Mathematics) Curriculum & Syllabus 2011

DEPARTMENT OF MATHEMATICS MADRAS CHRISTIAN COLLEGE

| 2011-12 ONWARDS

MADRAS CHRISTIAN COLLEGE (AUTONOMOUS) CHENNAI – 600 059

DEPARTMENT OF MATHEMATICS

B.Sc (Mathematics) Degree Programme

Curriculum & Syllabus (1st year) (With effect from 2011 - 12)

MADRAS CHRISTIAN COLLEGE

Vision

Madras Christian College aspires to be an institution of excellence transforming lives through education with a commitment to service.

Mission

Madras Christian College with the inspiration of the love of God offers to people of all communities, education of the whole person which is congruous with God's revelation in Christ of the true nature of humanity and is appropriate to the needs of India and of the world.

Graduate Attributes (GAs)

The Madras Christian College defines the philosophy underpinning its academic programmes and student life experience on campus through the Graduate Attributes (GA), that describe the knowledge, competencies, values and skills students imbibe for holistic development and contribution to society. These attributes encompass characteristics that are transferable beyond the domain of study into the national and international realm fostered through curricular, co-curricular and extra-curricular engagements.

GA 1: Intellectual Competencies

- Graduates of MCC have a comprehensive and incisive understanding of their domain of study as well as the capability for cross-disciplinary learning.
- They have the ability to apply the knowledge acquired through the curriculum as well as selfdirected learning to a broad spectrum ranging from analytical thinking to synthesise new knowledge through research.
- Forming independent individual opinions regarding academic cores and socially relevant issues

GA 2: Professional Ethics

- Graduates of MCC develop ethical and professional behaviour, which will be demonstrated in their chosen careers and constructive citizenship roles.
- They imbibe intellectual integrity and ethics in scholarly engagement and develop a spirit of inclusiveness through interactions with people of special needs and diversity.

GA3: Leadership Qualities

- Graduates of MCC inculcate leadership qualities & attitudes, and team behaviour along democratic lines through curricular, co-curricular and extra-curricular activities
- They develop managerial and entrepreneurial skills to ideate and create new opportunities along with career readiness and capacity to take up various competitive exams.

GA 4: Holistic Skill Development

- Graduates of MCC develop critical thinking, problem-solving, effective communication, emotional and social skills
- They develop digital competency to live, learn and serve in society.

GA 5: Cross-Cultural Competencies

- Graduates of MCC imbibe cross-cultural competencies through engaging with diverse linguistic, ethnic and religious communities providing scope to understand, accept and appreciate individuals at local, national and international levels.
- They develop a global perspective through contemporary curriculum, culture, language and international exchange programmes

GA 6: Service-Oriented Focus

- Graduates of MCC have sensitivity to social concerns and a conviction toward social justice through a commitment to active social engagement.
- They are endowed with a strong sense of environmental awareness through the curriculum and campus eco-system.

GA 7: Value-Based Spiritual Development

- Graduates of MCC are rooted in the principles of ethical responsibility and integrity permeated with Christian values leading to the building of character.
- They develop virtues such as love, courage, unity, brotherhood, industry and uprightness.

Programme Outcomes (POs) for B.Sc Degree Programmes

Programme Outcomes define the minimum level that students are expected to do, achieve and/or accomplish in order to graduate from a particular programme. These Outcomes are a framework to assess the nature of learning activity experienced within the programme. Upon completion of the programme, under graduate students should have shown evidence of being able to

РО		Descripton of PO	Mapped GA	
PO 1	Language Skills	 Demonstrate oral and written skills to effectively communicate in English and Languages of their choice Apply reading and listening skills to facilitate access to knowledge resources and understanding 	GA1, GA4, GA5	
PO 2 Domain Knowledge		 Acquire knowledge of basic concepts, theories and processes through study of core courses in respective programmes Apply and Analyze domain specific knowledge to emerging areas of academia and industry Assess, adapt and develop domain specific transferrable skills to new/unfamiliar context 	GA1, GA33, GA4, GA5	
PO 3	Interdisciplinary knowledge	 Identify and determine relationships across disciplines Acquire and apply interdisciplinary knowledge for holistic academic development. 	GA1, GA4	
PO 4	Digital skills	 Acquire computer skills and their application relevant to classroom and self-directed web-based learning Familiarize with and use domain-related software resources, computational skills and digital tools for data analysis, visualization and interpretation Ethically apply digital skills to creatively communicate a wide range of ideas and issues related to academic experiences 	GA1, GA2, GA3, GA4, GA6	
PO 5	Develop the ability to think critically and relate learning to academic, professional and real-life problem solving			
PO 6	Academic • Formulate and document results obtained in laboratory, case Writing studies project work field work and interpships		GA1, GA4, GA5	
PO 7	Demonstrate transferable capabilities and intrapreneurial skills that are relevant to the industry and other employment			
PO 8	 Demonstrate the ability to link classroom learning with social concerns through service learning and outreach programmes. Enhance positive personality traits to edapt to characterize 			

- Appreciate environmental consciousness and sustainability
- Draw valuable insights from one's own spiritual tradition and that of others for peaceful coexistence and general wellbeing

Programme Specific Outcomes (PSOs) for B.Sc (Mathematics)

At the time of graduation the students would be able to:

PSO	Description of PSO
PSO 1	• Inculcate the ability to effectively communicate mathematical problems in English and Languages of their choice
1301	 Enhance the reading and listening skills and to facilitate access to knowledge resources and understanding
	• Acquire knowledge of basic and essential concepts, theories and methodologies in mathematics
PSO 2	• Apply and analyze mathematical knowledge to emerging areas of academia and industry
	• Assess, adapt and develop analytical reasoning and problem solving skills to new/unfamiliar context
PSO 3	 Identify and determine relationships between Computational Sciences and other disciplines
1303	 Acquire and apply interdisciplinary knowledge for holistic academic development.
	 Acquire computational and computer skills and their application relevant to classroom and online learning
PSO 4	• Make use of mathematical, statistical software resources, computational skills and digital tools for business intelligence, data analysis, visualization and interpretation
	• Ethically apply digital skills to creatively communicate mathematical concepts and real life applications relevant to the needs and demands
	• Develop analytical thinking, logical reasoning ability, critical thinking and relate learning to academic and real-life problem solving
PSO 5	• Apply empirical knowledge and computational skills to identify and collect quantitative and qualitative data to analyze and formulate evidence-based suggestions and interpret to solutions
	 Formulate and document results obtained in laboratory, case studies, project work, field work and internships
PSO 6	 Effectively communicate through engaging presentations using methodologies appropriate to the discipline
PSO 7	Demonstrate transferable capabilities and intrapreneurial skills that are relevant to the industry and other employment opportunities
	• Develop entrepreneurial skills and generate intellectual property

	• Demonstrate the ability to link classroom learning with social
	concerns through service learning and outreach programmes.
	• Enhance positive personality traits to adapt to changing
	circumstances and demonstrate leadership qualities as an individual
PSO 8	and a member of cross-cultural and multi-disciplinary teams.
	• Appreciate environmental consciousness and sustainability
	• Draw valuable insights from one's own spiritual tradition and that of others for peaceful coexistence and general wellbeing

	Semester I						
Component		Course		Credits			
Part I		Language I	4	3			
Part II		English I	4	3			
	Major	Algebra and Trigonometry	5	4			
Part III		Calculus	5	4			
	Allied I	Physics I	6	5			
Part IV	(a)	Basic Tamil I / Advanced Tamil I / General Course I	4	2			
Part IV	(d)	Value Education	2	1			
	Total						

Curriculum – B.Sc (Mathematics)

	Semester II					
Con	nponent	Course		Credits		
Part I		Language II	4	3		
Part II		English II	4	3		
	Major	Differential Equations, Laplace Transforms and Fourier Series	5	4		
Part III		Differential Geometry and Analytical Geometry of 3 Dimension	5	4		
	Allied I	Physics II	6	5		
Do nt IV	(a)	Basic Tamil II /Advanced Tamil II /General Course II	4	2		
Part IV	(d)	Value Education	2	1		
	Total					

Semester III					
Component		Course		Credits	
Part I		Language III	4	3	
Part II		English III	4	3	
	Major	Algebraic Structures	5	4	
Part III		Multivariate Calculus and Theory of Numbers	5	4	
	Allied II	Discrete Mathematics I / Chemistry I	6	5	
Devisit IV	(b) Skill–	Personality Development	2	_	
Part IV	based	Inter Disciplinary (Mathematical Physics)	4	3	
Total			30	22	

	Semester IV						
Con	nponent	Course		Credits			
Part I		Language IV	4	3			
Part II		English IV	4	3			
	Major	Linear Algebra	5	4			
Part III		Advanced Calculus	5	4			
	Allied II	Discrete Mathematics II / Chemistry II	6	5			
Part IV	(b) Skill– based	Personality Development	2	3			
	(c)	Environmental Studies	4	2			
	Total 30						

	Semester V				
Component		Course		Credits	
		Real Analysis	7	5	
		Mathematical Statistics	7	5	
Part III	Major	Numerical Methods	6	5	
		Elective: Programming in C / Mathematics of Finance	6	5	
Part IV	(b) Skill– based	General Elective (Space Science)	4	3	
Total 30			23		

Semester VI						
Component		Course		Credits		
		Complex Analysis	6	5		
	Major	Mechanics	6	5		
Part III		Linear Programming	5	4		
i are in		Elective: Astronomy / Fluid Dynamics	5	4		
		Elective: Formal Languages & Graph Theory /	6	5		
		Mathematical Modeling				
Part IV	(b) Skill–	Computer Training	2	3		
Tartiv	based					
	Total					

Component	Extension Activities	Hours	Credits
Part V	NCC/NSS/Sports/Scrub Soc./ Dept. Assn. Activities	_	1
	Grand Total		140

Allied and Non–Major Courses offered by the Department

Allied I: (Offered to students of Physics and Chemistry Departments)

- Semester I : Allied Mathematics I
- Semester II : Allied Mathematics II (for Physics) / Allied Mathematics II (for Chemistry)

Allied II: (Offered to students of Mathematics Department)

- Semester III : Discrete Mathematics I
- Semester IV : Discrete Mathematics II

General Course: (Offered to students of Departments other than Mathematics)

- Semester I : Basic Mathematics
- Semester II : Basic Mathematics
- Inter Disciplinary: (Offered to students of Mathematics, Physics and Chemistry Departments)
- Semester III : Mathematical Physics

General Elective: (Offered to students of all Departments)

Semester V : Space Science

Computer Training: (Offered to students of Mathematics Department)

Semester VI : Computer Training

Environmental Studies:

Semester IV : Environmental Studies (Common to students of all Departments)

Course title:	Algebra and Trigonometry			
Course Code	111MT1M01			
Credits	4			
Hours / Cycle	5			
Category	Mandatory			
Semester		Ι		
Year of Implementation	AY 2023-24			1
Course Structure	Theory	Tutorial	Practical	Total Hours
	75	0	0	75
Learning Objectives:	To solve the polynomial by various methods, find exponential and Logarith between hyperbolic and	ling summation	ions of series inderstand th	s using binomial,
Course Outcome(s)	PSO Addressed	Blo	oom's Taxor	nomy Levels
CO1: Remember the relation between roots and coefficients, Descartes's rule of signs, Binomial, exponential and logarithmic series, expansions of trigonometric series, and logarithms of complex quantities.	PSO2, PSO3, PSO4 PSO5, PSO7	K1		
CO2: Examine the roots of polynomial equations, reciprocal equations, Binomial, Exponential and logarithmic and trigonometric series. Explain symmetric functions of roots, transformation of roots, the solutions by Newton's, Horner's and Cardon's method.	PSO2, PSO3, PSO4 PSO5, PSO7	K2		
CO3: Solve Polynomial equations, Reciprocal equations, series using the concept of Binomial, Exponential and Logarithmic expansions. Apply Newton's, Cardon's,	PSO2, PSO3, PSO4 PSO5, PSO7	K3		

Horner's method, Expansions of trigonometric series to find summation.		
CO4: Analyse the relation between roots and coefficients, Reciprocal equations and its types, Summation of series, and expansions of sin x, cos x, tan x, in terms of Hyperbolic functions.	PSO2, PSO3, PSO4 PSO5, PSO7	K4
CO5: Evaluate Symmetric functions of roots, the roots of equations using Newton's, Cardon's and Horner's method, summation of Binomial, exponential, Logarithmic and trigonometric series.	PSO2, PSO3, PSO4 PSO5, PSO7	K5

	Syllabus: Algebra and Trigonomet	ry		
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	UNIT I – Theory of Equations: Introduction to polynomials - Roots of polynomial equations – Imaginary and irrational roots – Relation between roots and coefficients – Symmetric function of the roots. Chapter 6: Sections 1, 2, 9, 10, 11, 12	15	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
II	UNIT II Transformation of equations – Reciprocal equations Chapter 6: Sections 13 – 19, 24, 30	18	C01 CO2 CO3 CO4	K1,K2,K3, K4,K5

	Descartes' rule of signs – Solution by Newton's and Horner's method, Cardon's method of solution of a cubic polynomial equation with real coefficients. Chapter 1: Section 1		CO5	
III	UNIT III Series: Summation of series using Binomial, Exponential and Logarithmic series and approximations. Chapter 3: Section 10, Chapter 4: Sections 1, 3, 6, 7, 9	13	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	UNIT IV Trigonometry Expansion of $\sin nx$, $\cos nx$, $\tan nx$, $\cos^n x$, $\sin^n x$ – Expansion of $\sin x$, $\cos x$, $\tan x$ in terms of x – Hyperbolic functions. Chapter 3: Sections 1, 2, 3, 4, 5, Chapter 4: Sections 1, 2	14	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V Trigonometry Logarithms of complex quantities – Sums of sines and cosines of <i>n</i> angles which are in Arithmetic Progression - Summation of trigonometric series using complex quantities. Chapter 5: Section 5, Chapter 6: Sections 2, 3	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

Prescribed Books/Textbook(s)

- 1. Algebra, Volume I, T.K. Manicavachagom Pillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan Publishers, 2004. (for Unit I, unit II, unit III)
- 2. Mathematics, Volume I (First Edition), P. Kandasamy and K. Thilagavathy, S. Chand & Co, 2004. (for unit II)
- 3. Trigonometry, S. Narayanan and T.K. Manicavachagom Pillay, S.Viswanathan Publishers, 2010.(for unit IV, unit V)

Reference Books

1. Algebra, Analytical Geometry and Trigonometry - I Year – Paper I, by P. R. Vittal and V. Malini, Margham Publications, Chennai, 2001.

2. Trigonometry by Hari Kishan, Atlantic, New Delhi, 2005.

Web Resources

1. <u>https://www.youtube.com/watch?v=hxJfu-CHmt8</u>

- 2. https://www.youtube.com/watch?v=wcLe_SFqamk&list=PLep340oM2dkAsi AiyHREquQrTULZ8VRko
- 3. <u>https://brilliant.org/wiki/hyperbolic-trigonometric-functions/</u>
 4. <u>https://www.youtube.com/watch?v=Z1BlcU1d6Fg</u>

				Cour	se Art	ticula	tion M	latrix f	for Alg	gebra a	and Tr	igono	metry				
CO			Progra	amme	Outc	omes			Programme Specific Outcomes								
	PO	PO	PO	PO	Р	Р	PO	PO	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	0	Ο	7	8	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	К5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	

Соц	rse Title			CALCULU	S		
	rse Code			111MT1M0			
	redits			4			
Hour	s / Cycle			5			
Ca	itegory			Mandatory	r		
Se	mester			Ι			
	ear of mentation			2011 -2012			
		Theory	Tutorial		Pr	actical	Total Hours
Course	e Structure	75	0			0	75
Learning	g Objectives	To acquire a knowled solving different types derived concepts to p	s of problem thu	s being ena		by the direct	ion to apply the
CO #		Course Outcome(s)		PSO Addresse	Taxonomy Levels K1 to K5)		
CO 1	Remember integral cal	formulae in diff culus.	erential and	PSO1 PSO2 PSO4		K1	
CO 2		uccessive derivatives methods of integra -ordinates.		PSO1 PSO2 PSO3 PSO4 PSO5		K2	
CO 3	derivatives	bnitz formula to and solve real wo ma and minima.		PSO1 PSO2 PSO3 PSO4		К3	
CO 4	functions, i	partial derivatives, integration by parts, segrals and length of	properties of	PSO1 PSO2 PSO3 PSO4 PSO5		K4	
CO 5	theorem, undetermi	0 0	nethod of Bernoulli's	PSO1 PSO2 PSO3 PSO4		K5	

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Introduction to differentiation - Successive differentiation - nth derivative - Leibnitz formula for nth derivative of a product - Partial differentiation - total differential Coefficient- Homogeneous functions - Euler's theorem. Chapter 3: Sections 1.1 - 1.6, 2.1, 2.2, Chapter 8: Sections 1.1 - 1.6	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
Π	Maxima and minima of functions of 2 variables – Lagrange's method of undetermined multipliers – simple problems. Chapter 8: Sections 4.1, 5	13	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	. Introduction to integration - Methods of integration – Integration by parts - Bernoulli's formula. Chapter 1: Sections 5, 6.1 – 6.6, 7.1 – 7.5, 8, 9, 10, 12, 15.1	17	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Properties of definite integrals – reduction formulae for standard integrals. Chapter 1: Sections 11, 13.1 – 13.10, 14	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
V	. Areas in polar coordinates - Length of the curve (Cartesian and polar coordinates) – Area of surface of revolution (Cartesian and polar coordinates). Chapter 2: Sections 1.4, 4.1, 4.2, 5	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
1. C a	ed Books/Textbooks (1-5 books) Calculus Vol I , S. Narayanan and T.K. Manicavachag nd Publishers Pvt Ltd, 2010 Calculus Vol II, S. Narayanan and T.K. Manicavachag	•		

2. Calculus Vol II, S. Narayanan and T.K. Manicavachagom Pillay, S. Viswanathan Printers and Publishers Pvt Ltd, 2010

References

1. Mathematics Vol I, P. Kandasamy and Thilgavathy, S. Chand, New Delhi, 2004.

2. Calculus, Thomas and Finney, Pearson Education, 9th Edition, 2006.

Suggested Reading

- 1. Differential Calculus, Shanti Narayan, S.Chand & Company (PVT) LTD, 1987.
- 2. Integral Calculus, Shanti Narayan & P.K.Mittal, S.Chand & Company (PVT) LTD, 2010.

Web Resources

- 1. https://archive.nptel.ac.in/courses/111/106/111106146/
- 2. https://ocw.mit.edu/courses/18-01-calculus-i-single-variable-calculus-fall-2020/

					Cou	irse Ar	ticulatio	on Ma	trix fo	r Calc	culus				
Со	Progr	ramme	Outco	mes				Programme Specific Outcomes							K
	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	PS O 7	Level
CO 1	3	3	2	2	1	-	-	3	3	2	2	1	-	-	K1
CO 2	3	3	3	2	1	-	-	3	3	3	2	1	-	-	K2
CO 3	3	2	3	2	1	-	-	3	2	3	2	1	-	-	К3
CO 4	2	3	3	2	2	-	-	2	3	3	2	2	-	-	K4
CO 5	3	3	2	2	-	-	-	3	3	2	2	-	-	-	K5
Avg.	2.8	2.8	2.6	2	1	-	-	2.8	2.8	2.6	2	1	-	-	
Avg	1.6								1.6						

	Syllabus: Differential Equations, Laplace Transform	ms and Fo	ourier Sei	ties
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	UNIT I – Ordinary Differential Equations: Introduction to ordinary differential equations - First order but of higher degree equations – solvable for p, solvable for x, solvable for y – Clairaut's form – simple problems. Second order equation with constant coefficient with particular integrals for eaxxm, eaxsin mx, eaxcos mx. Chapter 1: Sections $5.1 - 5.4$, 6; Chapter 2: Sections 1, 2, 3, 4	15	CO1	K2
II	UNIT II – Second order differential equation with variable coefficients ax2 d2y/dx2 + bx dy/dx + cy = $g(x)$ – method of variation of parameters. Chapter 2: Sections 8, 10	12	CO2	К3
III	UNIT III – Laplace Transforms: Introduction - Laplace transforms – inverse transform - Application of Laplace to solution of first and second order linear differential equation with constant coefficients. Chapter 5: Sections 1 - 8	18	CO3	K3
IV	UNIT IV – Partial Differential Equations: Introduction to partial differential equations (PDE) - Formation of PDE by eliminating arbitrary constants and arbitrary functions – complete integral – singular integral – general integral - Standard types $f(p,q)=0$; $f(x,p,q)=0$; f(y,p,q)=0; $f(z,p,q)=0$; $f(x,p)=f(y,q)$ – Clairaut's form and Lagrange's equation Pp+Qq = R . (Simple Problems) Chapter 4: Sections 1, 2, 3, 5.1 – 5.4, 6	12	CO4	K3, K4
V	UNIT V – Fourier Series: Introduction to Fourier series - Definition – Examples of Fourier series – Even or odd functions – Fourier series for even and odd functions – Half range expansions. (Simple problems). Chapter 6: Sections 1, 2, 3, 4, 5	18	CO5	K3, K4

Prescribed Books/Textbook(s)
Calculus, Volume 3, S. Narayanan and T.K. Manicavachagam Pillai, S.
Vishwanathan Publications, 2010.
Reference Books

Engineering Mathematics Volume 3, Dr. M.K. Venkataraman, The National Publishing Company, 2001.

Web Resources

- 1. https://nptel.ac.in/courses/111106100
- 2. <u>https://archive.nptel.ac.in/courses/111/106/111106139/</u>
- 3. https://nptel.ac.in/courses/111106111

		Co	urse Art	ticulatio	on Matr	rix for	Differe	ntial Ec	quations	s, Lapla	ce Tran	sforms	and Fo	urier Se	ries		
			Prog	ramme	Outcon	mes			Programme Specific Outcomes								
СО	РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	Cog Level
CO 1	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К2
CO 2	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 3	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 4	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	K3, K4
CO 5	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	КЗ, К4
Avg.	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	

Course title:	Differential Geometry & Ana	alytical Geome	try of 3-dimen	sions				
Course Code	111MT2M02							
Credits		4						
Hours / Cycle		5						
Category		Mandat	ory					
Semester		11						
Year of Implementation	AY 2011-12							
	Theory	Tutorial	Practical	Total Hours				
Course Structure	75	0	0	75				
Learning Objectives:	To study the fundamental pr and linear asymptotes for cu lines and spheres							
Course Outcome(s)	PSO Addressed	I	Bloom's Taxon	omy Levels				
CO1: Recall the fundamental notions relating to curvature, evolute, linear asymptotes and basic forms of plane, straight line and sphere	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К1						
CO2: Discuss properties of curvature, evolute, linear asymptotes and properties of planes, straight line and sphere	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7		К2					
CO3: Apply the fundamental notions to compute curvature, evolute, linear asymptotes for a curve. Solve various problems relating to planes, straight lines and circles	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7		КЗ					
CO4: Analyse properties of curvature, evolute, linear asymptotes and properties of planes, straight line and sphere	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7		К4					
CO5: Assess certain properties of of curvature, evolute, linear asymptotes and properties of planes, straight line and sphere	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	7 K5						

	Syllabus: Differential Geometry & Analytical Geometry	/ of 3-dimer	isions	
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	UNIT I – Differential Geometry Curvature – Cartesian formula for radius of curvature - The coordinates of the centre of curvature – Evolute and involute. Chapter X: Sections 2.1 – 2.5.	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
11	UNIT II – Radius of curvature in polar coordinates – p-r equation – Envelopes (definitions and problems only) – Linear asymptotes (definitions and simple problems only). Treatment and content as in (For Units I and II) Calculus, Volume I: S. Narayanan and T K Manicavachagom Pillay, S. Viswanathan Printers and Publishers, 2010. Chapter X: Sections 1.1 – 1.4, 2.6 – 2.8, Chapter XI: Sections 1 – 4, 5.1 – 5.3, 6	14	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
111	 UNIT III – Analytical Geometry of 3-Dimensions The plane – the general equation – several forms of the equations of a plane – angle between planes – length of perpendicular – equation of the planes bisecting the angle between the planes. Chapter II: Sections 1 – 11 	17	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	 UNIT IV – The Straight Line – symmetrical form – plane and straight line – coplanar lines – shortest distance between two lines. Chapter III: Sections 1 – 7; Section 8 (Sections 8.1, 8.2 are excluded) 	16	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V – The Sphere – standard form – plane section – equation of sphere passing through a given circle – intersection of two spheres – tangent plane to a sphere. Chapter IV: Sections 1 – 8	16	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

Prescribed Books/Textbook(s)

- 1. Calculus, Volume I: S. Narayanan and T K Manicavachagom Pillay, S. Viswanathan Printers and Publishers, 2010. For Units I & II
- 2. A text book of Analytical Geometry Part II (Three dimensions) T.K. Manicavachagom Pillay and T. Natarajan , S. Viswanathan (Printers and Publishers) Pvt. Ltd 2007. For Units III, IV & V

Reference Books

Engineering Mathematics Volume 3, Dr. M.K. Venkataraman, The National Publishing Company, 2001.

Web Resources

5. <u>https://nptel.ac.in/courses/111104095</u>

6. <u>https://www.youtube.com/watch?v=x2ImML0AIRc&list=PL---5YRdtrP_fyX6OS96i-</u> an1GrvClQwF&index=14 7. https://www.youtube.com/watch?v=X75_8pXonF8

		Cours	se Artic	ulation	Matri	x for [Differei	ntial Ge	eometry	/ & Ana	lytical	Geome	try of 3	-dimer	sions		
CO			Prog	ramme	Outco	mes			Programme Specific Outcomes								
	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	Level
CO 1	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К1
CO 2	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К2
CO 3	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 4	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К4
CO 5	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	K5
Avg.	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	
	2								2								

Course title:	Algebraic Structures								
Course Code	111MT3M01								
Credits		4							
Hours / Cycle		5							
Category		Mandat	ory						
Semester		111							
Year of Implementation	AY 2024-25								
	Theory	Total Hours							
Course Structure	75	0	0	75					
Learning Objectives:	 To understand the concepts of groups and rings and their types. To determine subgroups and normal subgroups of a given group and ideals or ring. To solve problems pertaining to subgroups and homomorphisms for groups. To differentiate between rings, commutative rings, rings with unit element, integral domains and fields. To understand and give examples of Euclidean rings, polynomial rings, irreducible elements, prime elements etc. 								
Course Outcome(s)	PSO Addressed	I	Bloom's Taxon	nomy Levels					
CO1: To recall the definitions of the groups and rings and their various types.	PSO1, PSO2, PSO5,		К1						
CO2: To compare the different types of groups and rings.	PSO1, PSO2, PSO5,	К2							
CO3: To illustrate the proofs of theorems such as Lagrange's Theorem, Cayley's Theorem, the Fundamental theorem of homomorphism etc.	PSO1, PSO2, PSO5,		К3						
CO4: To identify subgroups and normal subgroups of a given group. To categorize ideals of a given ring.	normal subgroups of a given group. To categorize ideals of a PSO1, PSO2, PSO5, K4								
CO5: To justify results on groups, subgroups, quotient groups, homomorphisms, ideals, quotient rings etc.	PSO1, PSO2, PSO5,		К5						

	Syllabus: Differential Equations, Laplace Transforms and Fourier Series											
Unit	Content	Hours	COs	Bloom's Taxonomy Level								
I	Group Theory: Groups – Subgroups – Counting Principle – Normal Subgroups Chapter 2: Sections 2.1 – 2.6	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5								

II	Homomorphisms – Automorphisms – Cayley's theorem – Permutation groups. Chapter 2: Sections 2.7 – 2.10 (omit application 1 and 2)	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	Ring Theory: Definition and examples of Rings – Some special classes of rings – Homomorphisms. Chapter 3: Sections 3.1 – 3.3	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Ideals and Quotient rings: More ideals and Quotient ideals – field of quotients of an integral domain. Chapter 3: Sections 3.4 – 3.6	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
V	Euclidean rings: A particular Euclidean ring – Polynomial Rings – Polynomials over the rational field. Chapter 3: Sections 3.7 – 3.10	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

Prescribed Book	rs/Textbook(s)
Topics	s in Algebra, Second Edition, I.N. Herstein, Wiley Student edition, 2009.
Reference Book	S
Mode	n Algebra, M.L. Santiago, Tata McGraw-Hill Publishing Co. Ltd, 2001.
Web Resources	
1.	https://archive.nptel.ac.in/courses/111/106/111106113/
2.	https://archive.nptel.ac.in/courses/111/106/111106131/

	Course Articulation Matrix for Differential Equations, Laplace Transforms and Fourier Series																
СО	Programme Outcomes Programme Specific Outcomes																
	РО	PO	PO	PO	PO	PO	PO	РО	PSO	Cog							
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	Level

CO 1	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К2
CO 2	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 3	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 4	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К4
CO 5	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К4
Avg.	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	

Cou	rse Title	MULTIVA	RIATE CALCU	LUS AND TH	EORY OF N	UMBERS						
Cou	rse Code		1	11MT3M02								
	redits			4								
Hour	rs / Cycle			5								
	ategory			Mandatory								
	mester		IV									
	ear of mentation	2011-12										
Course	e Structure	Theory	Tutorial	Prz	ictical	Total Hours						
Course	Guuciure	75	0		0	75						
Course	Objectives	integration together	▲									
CO #		Course Outcome(s))	PSO Addressed		Taxonomy Levels (K1 to K5)						
CO 1	double int	the methods i egrals, Jacobian tra amma functions an numbers.	ansformation,	PSO1 PSO2 PSO4	K1							
CO 2	Examine integrals ar	triple integral, g nd Euler's totient fu		PSO1 PSO2 PSO3 PSO4 PSO5	K2							

CO 3	Apply double integrals to area, surface area. Classify formulae involving ∇ , solve surface integral problems and illustrate number and sum of divisors of a given number.	PSO1 PSO2 PSO3 PSO4	К3
CO 4	Investigate change of order of integration, properties of special functions, gradient and divergence. Analyze volume integrals and congruences.	PSO1 PSO2 PSO3 PSO4 PSO5	K4
CO 5	Evaluate surface area, applications to area, curl of a vector-valued function, theorems on Gauss, Stoke's and Green's and simple problems in number theory.	PSO1 PSO2 PSO3 PSO4	K5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Multiple Integral: Double integral – Polar and Cartesian coordinates – Change of order of integration – Jacobian – Application to area. Chapter 5: Sections 1, 2.1, 2.2, 3.1, 5.1, Chapter 6: Section 1	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
II	Triple integral – Volume under triple integral – Surface area. Special functions: Beta and Gamma Functions, their properties and simple problems Chapter 5: Sections 4, 6.3, 7, Chapter 7: Sections 2.1 – 2.3, 3, 4, 5	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	Vector Calculus: Introduction – Gradient – Divergent – Curl – Formulae involving □ – Invariance. Chapter: 4	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Line, Surface and Volume integrals – Theorems of Gauss, Stokes and Green's (Statements only) – simple problems.	18	CO1 CO2 CO3 CO4	K1 K2 K3 K4

	Chapters: 5, 6		CO5	K5					
P	Prime and Composite numbers – The sieve of	15	CO1	K1					
	Eratosthenes-Divisors of a given number N – Euler's	-	CO2	K2					
	unction(N) – Integral part of a real number- The		CO3	K3					
	ighest power of a prime p contained in n! – the		CO4	K4					
	product of r consecutive integers is divisible by r! –		CO5	K5					
	Congruences – Numbers in arithmetic progressions –		005	KJ					
	Fermat's Theorem - (statement only) - Wilson's								
	heorem – (statement only) – Simple Problems. \Box								
	Chapter 5: Sections $1 - 17$								
 Pvt. Ltd, 2007. Vector Analysis, Schaum's outline series, Murray R. Spiegel., Seymour Lipschutz, Dennis Spellman, Second Edition, McGraw Hill Book Company, 2009. Algebra, Volume II by T.K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, S. Vishwanathan 									
 Vector Sector Algentiation 	tor Analysis, Schaum's outline series, Murray R. Spiegel and Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar								
 Vector Sector Alge Pub 	tor Analysis, Schaum's outline series, Murray R. Spiegel ond Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar lishers Pvt. Ltd, 2006.								
2. Vect Secc 3. Alge Pub References 1. Engineeri	tor Analysis, Schaum's outline series, Murray R. Spiegel ond Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar lishers Pvt. Ltd, 2006. ing Mathematics, Volume2, Fifth Edition, Dr. M.K. Ver	ajan, K.S. Ga	inapathy,	S. Vishwanathan					
2. Vect Sect 3. Alge Pub References 1. Engineeri Company, 2	tor Analysis, Schaum's outline series, Murray R. Spiegel ond Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar lishers Pvt. Ltd, 2006. ing Mathematics, Volume2, Fifth Edition, Dr. M.K. Ver	rajan, K.S. Ga nkataraman,	napathy,	S. Vishwanathan Publishing					
2. Vect Sect 3. Alge Pub References 1. Engineeri Company, 2	tor Analysis, Schaum's outline series, Murray R. Spiegel ond Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar lishers Pvt. Ltd, 2006. g ing Mathematics, Volume2, Fifth Edition, Dr. M.K. Ver 2004. ry Number Theory, Sixth Edition, David M. Burton, Ta	rajan, K.S. Ga nkataraman,	napathy,	S. Vishwanathan Publishing					
 Vectorial Sectorial Sec	tor Analysis, Schaum's outline series, Murray R. Spiegel ond Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar lishers Pvt. Ltd, 2006. ing Mathematics, Volume2, Fifth Edition, Dr. M.K. Ver 2004. ry Number Theory, Sixth Edition, David M. Burton, Ta Reading	rajan, K.S. Ga nkataraman,	napathy,	S. Vishwanathan Publishing					
 Vector Sector Alger Pub References Engineeri Company, 2 Elementa Suggested Web Resource 	tor Analysis, Schaum's outline series, Murray R. Spiegel ond Edition, McGraw Hill Book Company, 2009. ebra, Volume II by T.K. Manicavachagom Pillay, T. Natar lishers Pvt. Ltd, 2006. ing Mathematics, Volume2, Fifth Edition, Dr. M.K. Ver 2004. ry Number Theory, Sixth Edition, David M. Burton, Ta Reading	rajan, K.S. Ga nkataraman, ta McGraw-	napathy,	S. Vishwanathan Publishing					

	С	ourse	Artic	culatio	on Ma	atrix fo	or Multi	variat	e Cal	culus	and T	heory	y of N	umbe	ers
Со	Prog	ramme	Outco	mes				Programme Specific Outcomes							K
	РО	РО	PO	PO	PO	РО	PO 7	PS	PS	PS	PS	PS	PS	PS	Level
	1	2	3	4	5	6		01	O 2	O 3	O 4	O 5	O 6	O 7	
CO 1	3	3	2	2	1	-	-	3	3	2	2	1	-	-	K1
CO 2	3	3	3	2	1	-	-	3	3	3	2	1	-	-	K2
CO 3	3	2	3	2	1	-	-	3	2	3	2	1	-	-	K3
CO 4	2	3	3	2	2	-	-	2	3	3	2	2	-	-	K4

CO 5	3	3	2	2	-	-	-	3	3	2	2	-	-	-	K5
Avg.	2.8	2.8	2.6	2	1	-	-	2.8	2.8	2.6	2	1	-	-	
Avg	1.6										1.6				

Course Title		DISCRETE M	ATHEMATICS											
Course Code		111M	T3A01											
Credits		5												
Hours / Cycle			6											
Category		All	ied											
Semester		I	II											
Year of		2011-12												
Implementation														
Course Structure	Theory	Tutorial	Practical	Total Hours										
Course Structure	90	0	0	90										
Course Objectives	To acquire a knowledg various peoblems in co theory in counting.													

CO #	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)
CO 1	Remember basic combinatorial numbers, generating functions, multinomial number, Euler's function and Polya Theory.	PSO1 PSO2 PSO4	K1
CO 2	Examine Sterling numbers, recurrence relations, multinomial theorem,	PSO1 PSO2 PSO3 PSO4 PSO5	K2

	permutations with forbidden positions and necklace problems.		
CO 3	Apply Stirling numbers of first kind, partitions of numbers and illustrate Burnside lemma.	PSO1 PSO2 PSO3 PSO4	К3
CO 4	Analyze Bell numbers, inventory maps, sieve formula, the menage problem and cycle index of a permutation group.	PSO1 PSO2 PSO3 PSO4 PSO5	K4
CO 5	Access properties of Stirling numbers of the second kind, symmetric functions, inclusion- exclusion principle, Fibonacci sequences and Polya's Theorems and their applications.	PSO1 PSO2 PSO3 PSO4	К5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Basic Combinatorial Numbers – Stirling Numbers of the First Kind – Stirling Numbers of the Second Kind. Section: I.1	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
II	Generating Functions and Recurrence Relations – Symmetric Functions. Sections: I.2 and I.3	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	Multinomials – Multinomial Theorem – Inclusion and Exclusion Principle. Sections: I.4 and I.5 (up to page 77)	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

IV	Euler Function – Permutations with Forbidden	18	CO1	K1
	Positions – The 'Menage' Problem – Problem of		CO2	K2
	Fibonacci.		CO3	K3
	Sections: I.5 (from page 77) and I.6		CO4	K4
			CO5	K5
V	Polya Theory – Necklace Problem and Burnside's	18	CO1	K1
•	Lemma – Cycle Index of a Permutation Group –	10	CO2	K2
	Polya's theorems and their Immediate Applications.		CO3	K3
	Sections: II.1, II.2 and II.3		CO4	K4
			CO5	K5
	ed Books/Textbooks (1-5 books) natorics Theory and Applications, V. Krishnamurthy, East -	–West Press.	1989.	
Reference	ces			
1.lan Anc	lerson, Combinatorics of finite sets, Oxford Science Public	cation, 2011.		
Suggeste	ed Reading			
1.Kennet	h P. Boggart, Introductory Combinatorics, Pitman Books L	.td, 1983.		
Web Res	sources			
1. <u>h</u>	ttps://archive.nptel.ac.in/courses/111/106/11110615	<u>5/</u>		
	ttps://amy mit adu/acuraca/18,212 algobraia combi			1

2. https://ocw.mit.edu/courses/18-212-algebraic-combinatorics-spring-2019/

					irse A	rticulai	tion Mat								K	
Со	Prog	ramme	Outco	mes				Prog	Programme Specific Outcomes							
	РО	PO) PO	PO	PO	РО	PO 7	PS	PS	PS	PS	PS	PS	PS	Level	
	1	2	3	4	5	6		01	O 2	O 3	O 4	O 5	O 6	O 7		
CO 1	3	3	2	2	1	-	-	3	3	2	2	1	-	-	K1	
CO 2	3	3	3	2	1	-	-	3	3	3	2	1	-	-	K2	
CO 3	3	2	3	2	1	-	-	3	2	3	2	1	-	-	К3	
CO 4	2	3	3	2	2	-	-	2	3	3	2	2	-	-	K4	
CO 5	3	3	2	2	-	-	-	3	3	2	2	-	-	-	K5	
Avg.	2.8	2.8	2.6	2	1	-	-	2.8	2.8	2.6	2	1	-	-		
Avg				1.6		1		1.6								

Course title:	Mathematical Physics			
Course Code	111MT6M02			
Credits		3		
Hours / Cycle		4		
Category		Interdiscip	linary	
Semester		III	initary	
Year of Implementation	AY 2011-12			
	Theory	Tutorial	Practical	Total Hours
Course Structure	60	0	0	60
Learning Objectives:	To learn about the partial dis special functions	-		
Course Outcome(s)	PSO Addressed	I	Bloom's Taxon	omy Levels
CO1: Remember the formation of partial differential equations by eliminating the arbitrary constants. Recall Clairaut's form, Lagrange's linear equation, one dimensional wave equation, one dimensional heat equation, two dimensional heat equation, Bessel's equation, Legendre's equation.	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7		K1	
CO2: Discuss the formation of partial differential equations by eliminating the arbitrary functions, partial differential equations of higher order	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7		К2	
CO3: Solve the partial differential equations by direct integration ; Solve partial differential equations of types f(p,q) = 0, z = px + qy + f(p,q), f(z,p,q) = 0, $f_1(x,p) = f_2(y,q)$ Solve problems related to one dimensional wave equation, one dimensional and two	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7		K3	

dimensional heat equation.		
Solve problems related to		
Bessels' and Legendre's		
functions.		
CO4 Investigate the equations		
reducible to standard forms.		
Categorise non - homogeneous		
linear equations with constant		
coefficients. Analyse		
temperature distribution in a	PSO2, PSO3,	К4
rectangular plate, an infinite	PSO4,PSO5,PSO6,PSO7	κ4
plate, a rectangular plate with		
insulated sides. Analyse the		
reccurence formulae for		
Bessel's function and		
Legendre's polynomial.		
CO5: Construct the solutions		
for 4 types of partial differential		
equations, Lagrange's equation,		
non - homogeneous linear		
equations with constant		
coefficients. Construct the	PSO2, PSO3,	1/5
derivations and solutions for	PSO4,PSO5,PSO6,PSO7	К5
one dimensional wave and heat		
equations, two dimensional		
heat equation.		
Justify orthogonal property for		
Legendre's polynomial.		

	Syllabus: Differential Geometry & Analytical Geometry	of 3-dimen	sions	
Unit	Content	Hours	COs	Bloom's Taxonomy Level
1	Introduction – Formation of Partial Differential Equations by Elimination of Arbitrary Functions – Formation of Partial Differential Equations by Elimination of Arbitrary Functions – Types of Solutions of Partial Differential Equations – Solutions by Direct Integration – First Order Partial Differential Equations – Solutions by Direct Integration – First Order Partial Differential Equations – Type I $f(p,q)=0$ - Type II $z = px + qy + f(p,q)$ (Clairaut's Form) - Type III $(z, p, q) = 0$ Type IV $f_1(x, p) = f_2(y, q)$ - Equations Reducible to Standard Forms	12	CO1 CO2 CO3 CO4 CO5	К1,К2,К3, К4,К5
II	Lagrange's Equation – Partial Differential Equations of Higher Order – Non-homogeneous Linear Equations with Constant Coefficient Chapter 3: Sections 3.11 – 3.13	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

	Introduction – Derivation of One Dimensional Wave Equation – Solution of Wave Equation – One Dimensional Heat Flow – Solution of One Dimensional Heat Equation Chapter 4: Sections 4.0 – 4.4	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	Two Dimensional Heat equation – Cartesian Form – Temperature Distribution in a Rectangular Plate – Temperature Distribution in an Infinite Plate – Temperature Distribution In Rectangular Plate with Insulated Sides Chapter 4: Sections 4.5 – 4.8	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	Introduction – Bessel Functions (Omit Series Solution) - Legendre's Equation (Omit Series Solution) . Chapter 6: Sections 6.0 – 6.2	12	CO1 CO2 CO3 CO4 CO5	К1,К2,К3, К4,К5

Prescribed Books/Textbook(s)

Engineering Mahematics Volume – III by S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, Second Edition, Scitech Publications (India) Pvt. Ltd., Chennai.

Reference Books

- 1. Engineering Mathematics Third Year Part B by M.K. Venkataraman, The National Publishing Company, Chennai.
- 2. Higher Mathematics for Engineering and Science by M.K. Venkataraman, The National Publishing Company, Chennai.
- 3. Differential Equations, Third Edition by Shepley L. Ross, John Wiley & Sons, 2004.
- 4. B.D. Gupta, Mathematical Physics, Second Revised Edition, Vikas Publising House Pvt. Ltd. 2004 5. Courant and Hilbert, Mathematical Physics

Web Resources

- 8. <u>https://onlinecourses.nptel.ac.in/noc22_ma37/preview</u>
- 9. https://onlinecourses.nptel.ac.in/noc20_ma14/preview

		Cours	se Artic	ulation	Matri	x for E	Differer	ntial Ge	ometry	/ & Ana	lytical	Geome	try of 3	-dimer	sions		
СО			Prog	ramme	Outco	mes			Programme Specific Outcomes								
	РО	PO	РО	РО	PO	PO	PO	РО	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	Level
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	К1

CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	К2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	К4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	К5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	
		-			-	-					<u>.</u>	-		-		-	

Course title:	Linear Algebra									
Course Code	111MT4M01									
Credits	4									
Hours / Cycle	5									
Category	Mandatory									
Semester	IV									
Year of Implementation	AY 2023-24									
Course Structure	Theory	Tutorial	Practical	Total Hours						
	75	0	0	75						
Learning Objectives:	To study the fundamental properties of vector space, dual space, various types of matrices and linear transformations.									
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels								
CO1: Recall the fundamental concepts in vector space, Dimension of vector space, linear transformations and matrix representation of linear transformations	PSO2, PSO3, PSO4 PSO5, PSO7	K1								
CO2: Discuss properties of subspace, inner product space, matrices and different types of linear transformations.	PSO2, PSO3, PSO4 PSO5, PSO7 K2									
CO3: Solve problems related to change of basis and matrix of a linear transformation.	PSO2, PSO3, PSO4 PSO5, PSO7	K3								
CO4: Analyze direct sums and dimensions of vector spaces. Investigate eigen	PSO2, PSO3, PSO4 PSO5, PSO7 K4									

values, rank and determinant of matrices.		
CO5: Evaluate problems based on the theorems of vector spaces, matrices and different types of linear transformations	PSO2, PSO3, PSO4 PSO5, PSO7	K5

Syllabus: Linear Algebra										
Unit	Content	Hours	COs	Bloom's Taxonomy Level						
I	 UNIT I – Vector Spaces: Definitions, examples – Subspaces and Quotient Spaces – Sums and Direct Sums – Linear Independence Chapter 6: Sections 6.1 – 6.4. 	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5						
II	UNIT II Basis and Dimensions – Homomorphisms – Dual Spaces – Inner Product Spaces Chapter 6: Sections 6.5 – 6.8	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5						
III	UNIT III Linear Transformations and Matrices: Algebra of Linear Transformations – Eigen values and Eigenvectors Chapter 7: Sections 7.1 – 7.2	12	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5						
IV	UNIT IV Matrix Algebra – Trace and Transpose of a Matrix – Rank of Matrix Chapter 7: Sections 7.3, 7.5, 7.6	14	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5						
V	UNIT VDeterminants – Hermitian and Unitary Transformations.Chapter 7: Sections 7.8, 7.9	13	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5						

Prescribed Books/Textbook(s) Modern Algebra, M.L. Santiago, Tata McGraw-Hill Publishing Co. Ltd, 2001. Reference Books

1. Topics in Algebra, Second Edition, I.N. Herstein, Wiley Student edition, 2009.

2. Linear Algebra, Second Edition, Serge Lang, Addison Wesley Publishing Co., 1970.

Web Resources

10. https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/

- 11. https://nptel.ac.in/courses/111104137
- 12. <u>https://www.youtube.com/watch?v=9pqhfDyzbhw</u>

Course Articulation Matrix for Linear Algebra																	
СО	Programme Outcomes							Programme Specific Outcomes									
	PO PO PO PO P P PO PO						PS	PS	PS	PS	PS	PS	PS	PS	Cog		
	1	2	3	4	Ο	Ο	7	8	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	К5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	
S																	

Course title:		Advanced C	alculus					
Course Code		111MT4M02						
Credits		4						
Hours / Cycle		5						
Category	Mandatory							
Semester		IV						
Year of Implementation	AY 2011-12							
Course Structure	Theory	Tutorial	Practical	Total Hours				
Course structure	75	0	0	75				
Learning Objectives:	To impart the knowledge and series with an extensi functions. To introduce th properties and application functions.	ion to the ide he notion of l	eas of metric s Fourier Trans	spaces and limits of forms with its				
Course Outcome(s)	PSO Addressed	Bl	oom's Taxon	omy Levels				
CO1: Remember the basic concepts in sets, sequences and series. Recall fundamentals of metric spaces, different kinds of Fourier transform and its inverse transforms.	PSO 2, PSO 3, PSO 4, PSO 5, PSO 6	К1						
CO2: Examine the operations on sets, the convergence of sequences and series. Discuss properties of Fourier transforms.	PSO 2, PSO 3, PSO 4, PSO 5, PSO 6	К2						
CO3: Illustrate the countable sets, convergent sequences, bounded sequences, monotone sequences, Cauchy sequences, Metric spaces and convergence and absolute convergence of series of real numbers. Apply properties of various Fourier transforms to evaluate certain integrals.	PSO 2, PSO 3, PSO 4, PSO 5, PSO 6	КЗ						
CO4: Investigate countable sets, convergence and divergence of sequences and series. Analyse limits in metric spaces, and convolution and Parseval's identity of Fourier transforms.	PSO 2, PSO 3, PSO 4, PSO 5, PSO 6	К4						
CO5: Evaluate the least upper bounds and greatest lower	PSO 2, PSO 3, PSO 4, PSO 5, PSO 6		К5					

bounds, limit of sequences and	
series, limits of functions in real	
line and metric spaces and	
certain type of integrals using	
Fourier transforms.	

	Syllabus: Algebra and Trigonometry			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
1	 Sets and Functions : Sets and elements – Operations on sets – Functions – Real valued functions – Equivalence – Countability – Real numbers – Least upper bounds. Chapter 1 	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3,K4,K5
II	 Sequences of Real Numbers: Definition of a sequence and subsequence – Limit of a sequence – Convergent sequences – Divergent sequences – Bounded sequences – Monotone sequences – Operations on convergent sequences – Operations on divergent sequences. Chapter 2: Sections 2.1 – 2.8 	15	CO1, CO2, CO3, CO4, CO5	К1, К2, К3,К4,К5
111	 Sequences of Real Numbers: Limit superior and limit inferior – Cauchy sequences. Series of Real Numbers: Convergence and divergence; Series with non-negative numbers; Alternating series; Conditional convergence and absolute convergence. Chapter 2: Sections 2.9, 2.10, Chapter 3: Section 3.1 – 3.4 	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3,K4,K5
IV	 Series of Real Numbers: Tests for absolute convergence; Series whose terms form a non-increasing sequence. Limits and metric spaces: Limit of a function on a real line; Metric spaces; Limits in metric spaces. Chapter 3: Sections 3.6, 3.7, Chapter4: 4.1, 4.2 (In 4.2C examples 4 and 5 are omitted), 4.3 	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3,K4,K5
V	Fourier Transform: Complex form of Fourier integral formula, Properties of Fourier transform, Fourier Cosine and Fourier Sine Transforms, Properties, Convolution, Parseval's identity.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3,K4,K5

Chapter 6: Sections 9 – 15.		

- 1. Methods of Real Analysis, Richard R. Goldberg (Oxford and IBH Publishing Co.), 1970. (for Units I to IV)
- 2. Calculus, Volume III, S. Narayanan and Manikavasagam Pillai, S. Viswanathan Printers & Publishers Pvt. Ltd, 2010. (for unit V)

Reference Books

- 1. Principles of Real analysis, Third edition, Walter Rudin, Mc-Graw Hill international edition, 1976.
- 2. Elements of Real Analysis, Shanti Narayan, M.D. Raisinhhania, S. Chand & Company Ltd., Twelfth Revised Edition, 2011.
- 3. Sequence and Series, S. Arumugam, Issac, New Gamma Publishing House, 1993
- 4. Transforms and Partial Differential Equations, Fifth revised edition, G. Balaji, 2010.

Books for further study

- 1. Real analysis, Volume I, K. Chandrasehhara Rao, K.S Narayan, S. Viswanathan Printers & Publishers Pvt. Ltd., 2008.
- 2. Introduction to Calculus and Analysis, Volume I, Richard Courant, Fiitz John, Springer, 2010.
- 3. Transforms and Partial Differential Equations, Fifth revised edition, G. Balaji, 2010.

- 1. <u>https://ocw.mit.edu/courses/18-100a-real-analysis-fall-2020/pages/lecture-notes-and-readings/</u>
- 2. https://onlinecourses.nptel.ac.in/noc20_ma51/preview
- 3. <u>http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF</u>
- 4. <u>https://ocw.mit.edu/courses/6-003-signals-and-systems-fall-2011/resources/mit6_003f11_lec16/</u>

	Course Articulation Matrix for Advanced Calculus																
СО			Prog	ramme	Outco	mes			Programme Specific Outcomes								
	PO PO PO PO PO PO F								PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	Level
CO 1	-	3	1	1	3	2	2	-	-	3	1	1	3	2	2	-	К1
CO 2	-	3	1	2	3	2	2	-	-	3	1	2	3	2	2	-	К2
CO 3	-	3	2	2	3	2	1	-	-	3	2	2	3	2	1	-	К3
CO 4	-	3	1	2	3	2	1	-	-	3	1	2	3	2	1	-	К4
CO 5	-	3	2	2	3	2	2	-	-	3	2	2	3	2	2	-	K5
Avg.	-	3	1.4	1.8	3	2	1.6	-	-	3	1.4	1.8	3	2	1.6	-	

Course title:	Discrete Mathematics II									
Course Code	111MT4A01									
Credits		5								
Hours / Cycle	6									
Category		Mandat	ory							
Semester	IV									
Year of Implementation	AY 2023-24									
Course Structure	Theory	Tutorial	Practical	Total Hours						
Course structure	90	0	0	90						
Learning Objectives:	To understand the Recur	rrence Relati	ons and Gen	erating Functions.						
	To study the fundamenta	al properties	of Lattices.							
Course Outcome(s)	PSO Addressed	Blo	om's Taxon	omy Levels						
CO1: Recall the fundamental concepts of Techniques of Proof, TF statements, Normal Forms and Lattices.	PSO2, PSO3, PSO4 PSO5, PSO6, PSO7	K1								
CO2: Discuss the recurrence relations, connectives and the properties of Lattices.	PSO2, PSO3, PSO4 PSO5, PSO6, PSO7	K /								
CO3: Solve problems involving Generating Functions, Truth Tables, New Lattices and Boolean Polynomials.	PSO2, PSO3, PSO4 PSO5, PSO6, PSO7		K3							
CO4: Analyze Primitive Recursive Functions, Parsing tree of formulae, Principal Normal Forms, Modular and Distributive Lattices and Karnaugh Maps.	PSO2, PSO3, PSO4 PSO5, PSO6, PSO7	K4								
CO5: Evaluate problems using the theorems of Lattices, Replacement Process, Tautological Implications and Mathematical Induction.	PSO2, PSO3, PSO4 PSO5, PSO6, PSO7		K5							

	Syllabus: Discrete Mathematics	II		-
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	 UNIT I – Mathematical Induction, Recurrence Relations and Generating Functions: Techniques of Proof – Mathematical Induction – Recurrence – Polynomials and their Evaluations – Recurrence Relations – Generating Functions – Some Common Recurrence Relations – Primitive Recursive Functions – Recursive and Partial Recursive Functions. Chapter IV: Sections 1 and 2, Chapter V: Sections 1, 2, 3, 6, 7, 8 and 9. 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
Π	 UNIT II - Mathematical Logic: TF Statements – Connectives – Atomic and Compound Statements – Well-Formed Statement Formulae –Parsing – Truth Table of a Formula – Tautology – Tautological Implications and Equivalence of Formulae. Chapter IX: Sections 1 – 8. 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	 UNIT III - Mathematical Logic (Contd): Replacement Process – Functionally Complete sets of connectives and Duality law – Normal Forms – Principal Normal Forms. Chapter IX: Sections 9 – 11, 12. 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	 UNIT IV - Lattices: Lattices – Some properties of Lattices – New Lattices – Modular and Distributive Lattices. Chapter X: Sections 1 (omit Example 15, pp No. 10.6), 2, 3 (omit Remark, pp 10.14), 4 (omit Theorem 10 and 17, Example 4, pp 10.23, Example 11, pp 10.24). 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V - Boolean Algebra: Boolean Algebra – Boolean Polynomials – Karnaugh Maps.Chapter X: Sections 5 (omit Theorem 25), 6, 7 (omit K-Map for 5 and 6 vertices)	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

Prescribed Books/Textbook(s	s)	
-----------------------------	----	--

Discrete Mathematics, M.K. Venkataraman, N. Sridharan and N. Chandrasekaran, The National Publishing Company, Chennai, 2003.

Reference Books

- 3. R. Johnsonbaugh, Discrete Mathematics, 5th Edn., Pearson Education, Asia, 2001.
- 4. C.L. Liu, Elements of Discrete Mathematics, McGraw Hill, New York, 1985.

Suggested Reading:

- 1. J. Truss, Discrete Mathematics for Computer Scientists, 2nd Edn., Pearson Education, Asia, 2000.
- 2. M.K. Sen and B.C. Chakraborthy, Discrete Mathematics, 2nd Edn., Books and Allied Private Ltd., Kolkata, 2002.

- 1. https://onlinecourses.nptel.ac.in/noc20_cs37/preview
- 2. <u>https://onlinecourses.swayam2.ac.in/cec20_ma02/preview</u>
- 3. <u>https://www.youtube.com/watch?v=g5c7xKcNWr0&list=PL15h-</u> I4HvELJSw75O2ZVe0BKEQuzWBigB
- 4. <u>https://www.youtube.com/watch?v=A3Ffwsnad0k&list=PLl-gb0E4MII28GykmtuBXNUNoej-vY5Rz</u>

				Cours	se Art	ticula	tion l	Matrix	c for I	Discre	te Ma	them	atics I	I			
CO		I	Progra	amme	Outo	come	s			-	Progr	amme	e Spec	ific O	utcon	nes	
	РО	PO	РО	PO	Р	Р	Р	РО	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	0 5	0 6	07	8	01	0 2	0 3	0 4	0 5	0 6	0 7	0 8	Level
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	K3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	K5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	
Avg.		1		1.2	25	1		1			1	1.2	225	1	1	1	

Course title:		Real Ana	lysis					
Course Code								
Credits								
Hours / Cycle		7						
Category		Mandat	ory					
Semester	V							
Year of Implementation	AY 2011-12							
Course Structure	Theory	Tutorial	Practical	Total Hours				
	105	0	0	105				
Learning Objectives:	To impart the knowledge of continuity, topology of metric spac the concepts of differentiation and integration and Taylor's seri introduce the notion convergence and uniform convergence of sequence and series of functions							
Course Outcome(s)	PSO Addressed	В	loom's Taxono	omy Levels				
CO1: Recall the basics of metric spaces, calculus and convergence and divergence of sequence and series of functions.	PSO2, PSO3, PSO4, PSO5, PSO6, PSO7	K I						
CO2: Discuss the relevance of topology of metric spaces, Differentiation and Integration. Examine the convergence and uniform convergence of sequence and series of functions	PSO2, PSO3, PSO4, PSO5, PSO6, PSO7							
CO3: Illustrate continuous function, topological properties of metric spaces, differentiation and integration of functions. Classify convergence and uniform convergence of sequence and series of functions.	PSO2, PSO3, PSO4, PSO5, PSO6, PSO7	КЗ						
CO4: Analyze continuity, open sets, closed sets, connectedness, boundedness, completeness and completeness of metric spaces. Identify properties of differentiation and integration, convergence and uniform convergence.	PSO2, PSO3, PSO4, PSO5, PSO6, PSO7		К4					

CO5: Construct continuous functions, topology of metric spaces, properties of differentiation and integration, Taylor's series, and convergence and uniform convergence of sequence and series of functions.	PSO2, PSO3, PSO4, PSO5, PSO6, PSO7	K5
--	---------------------------------------	----

	Syllabus: Real Analysis			
Unit	Content	Hours	COs	Bloom's Taxono my Level
Ι	ContinuousfunctionsonMetricSpaces:Functionscontinuousatapointontherealline,Reformulation,Functionscontinuousonametricspace,Opensets,Closedsets,Discontinuousfunctionsontherealline.Chapter 5	22	CO1, CO2, CO3, CO4, CO5	К1, К2, К3,К4,К 5
II	ConnectednessCompletenessandcompactness:Moreabout open sets, Connected sets, Bounded sets and totally bounded sets, Complete metric spaces, Compact metric spacesChapter 6: Sections 6.1 – 6.5	22	CO1, CO2, CO3, CO4, CO5	К1, К2, К3,К4,К 5
III	 Connectedness Completeness and compactness: Continuous functions on a compact metric space, Continuity of inverse functions, Uniform continuity. Calculus: Sets of measure zero, Definition of the Riemann integral, Existence of the Riemann integral (Statement of theorem 7.3a only) – Properties of Riemann integral Chapter 6: Sections 6.6 – 6.8, Chapter 7: Sections 7.1, 7.2, 7.4 	22	CO1, CO2, CO3, CO4, CO5	К1, К2, К3,К4,К 5
IV	 Calculus: Derivatives, Rolle's theorem, Law of mean, Fundamental theorems of calculus Taylor Series: Taylor's theorem. Chapter 7: Sections 7.5 – 7.8, Chapter 8: Section 8.5 	20	CO1, CO2, CO3, CO4, CO5	К1, К2, К3,К4,К 5

Chapter 9: Sections 9.1 – 9.5	V	Sequences and Series of Functions: Pointwise convergence of sequences of functions – Uniform convergence of sequences of functions – Consequences of uniform convergence – Convergence and uniform convergence of series of functions – Integration and differentiation of series of functions. Chapter 9: Sections 9.1 – 9.5	19	CO1, CO2, CO3, CO4, CO5	К1, К2, К3,К4,К 5
-------------------------------	---	---	----	-------------------------------	-------------------------

Methods of Real Analysis, Richard R. Goldberg, Oxford and IBH Publishing Co., 1970.

Reference Books

- 1. Modern Analysis, Arumugam, Issac, New Gamma Publishing House, 1993.
- 2. Elementary Analysis: The Theory of Calculus, Kenneth A. Ross, Springer, 2010.
- 3. MetricSpaces, Qamrulhasan Ansari, Narosa Publishing House, 2010.

Books for further reading

- 1. Understanding Analysis, Stephen Abbott, Springer, 2008.
- 2. Real analysis, Volume II, K. Chandrasekhara Rao, K.S Narayan, S. Viswanathan Printers & Publishers Pvt. Ltd, 2008.
- 3. Elements of Real Analysis, Shanti Narayan, M.D. Raisinghania, S. Chand & Company Ltd., Twelfth Revised Edition, 2011.

- 5. <u>https://ocw.mit.edu/courses/18-100a-real-analysis-fall-2020/pages/lecture-notes-and-readings/</u>
- 6. https://onlinecourses.nptel.ac.in/noc20_ma51/preview
- 7. http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF

	Course Articulation Matrix for Real Analysis																
СО	D Programme Outcomes										Prog	ramme	e Speci	fic Out	comes	;	
	РО	РО	РО	РО	РО	PO	РО	РО	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	5	6	7	8	01	02	О3	04	05	O 6	07	08	Level
CO 1	-	3	1	2	3	2	1	-	-	3	1	2	3	2	1	-	К2
CO 2	-	3	1	2	3	3	1	-	-	3	1	2	3	3	1	-	К3
CO 3	-	3	1	2	3	2	1	-	-	3	1	2	3	2	1	-	К3
CO 4	-	3	1	2	3	2	1	-	-	3	1	2	3	2	1	-	КЗ
CO 5	-	3	2	1	3	2	1	-	-	3	2	1	3	2	1	-	К4
Avg.	-	3	1.2	1.8	3	2.2	1	-	-	3	1.2	1.8	3	2.2	1	-	

Course title:	Mathematical Statistics								
Course Code	111MT5M02								
Credits	5								
Hours / Cycle	7								
Category		Mandatory							
Semester		V							
Year of Implementation	AY 2011-12								
Course Characteria	Theory	Tutorial Practical Total H							
Course Structure	105	0	0	105					
Learning Objectives:	To study the properties of ra given set of data using corre			•					
Course Outcome(s)	PSO Addressed	I	Bloom's Taxon	omy Levels					
CO1: Recall the fundamental notions of random variables, distributions correlation, regression and tests of significance	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К1							
CO2: Compare various types of random variables, distributions and their properties. Discuss correlation, regression and tests of significance	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К2							
CO3: Solve problems related to random variables, distributions, correlation, regression and apply tests of significance to given data set	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	КЗ							
CO4: Analyse various properties of random variables and distributions. Investigate given data set using correlation, regression and tests of significance	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К4							
CO5: Assess the properties of random variables, distributions correlation, regression and tests of significance	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К5							

	Syllabus: Differential Geometry & Analytical Geometry	of 3-dimen	sions	
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	Discrete and Continuous Probability Distributions: Random variables – Probability distributions – Discrete and Continuous, Mathematical expectation, moments, moment generating function, characteristic function. Chapters 5: Sections 5.1 – 5.5.2, Chapter 7: Sections 7.1 – 7.3.2, 7.3.5	21	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5
II	Special Discrete and Continuous Distributions: Introduction – Binomial, Poisson distributions – Normal distribution. Chapter 6: Sections 6.1 – 6.2.4, 6.3 - 6.3.5, Chapter 8: Sections 8.1 – 8.4	21	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5
III	Correlation and Regression: Correlation coefficient, linear regression – equations of lines of regression. Chapter 10: Sections 10.1 – 10.6	21	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5
IV	Tests of Significance – Large Samples: Introduction – Types of Sampling – Large samples – Testing the significance for a single proportion - Testing of significance for difference of proportions – Sampling of values of a variable – Sampling distribution of the mean – Confidence limits - Testing the significance of difference between standard deviations of two large samples. Chapter 12: Sections 12.1 – 12.8.2	21	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5
V	 Tests of Significance – Small Samples: Introduction – Chi – square distribution – Student's t – distribution – Snedecor's F distribution (Definitions only) – Properties (Statements only) - Tests of significance based on t, F - distributions, 22 test of goodness of fit, 22 test of independence. Chapter 13: Sections 13.1 – 13.2.2, 13.5 – 13.7.1, Chapter 15: Sections 15.2 – 15.2.2, 15.3.1, Chapter 16: Sections 16.1 - 16.3.3 	21	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5

Mathematical Statistics, J. N. Kapur and H. C. Saxena, 20th Edition, S. Chand & Co. Ltd., New Delhi, 2010.

Reference Books

1. S. C. Gupta & V. K. Kapoor, Fundamental of Mathematical Statistics, 9th Edition, Sultan Chand & Sons, New Delhi, 1994.

2. P. R. Vittal, Mathematical Statistics, Margham Publications, Chennai, 2002..

Web Resources

https://ocw.mit.edu/courses/18-655-mathematical-statistics-spring-2016/ https://www.coursera.org/learn/basic-statistics

https://stats.libretexts.org/Bookshelves/Introductory Statistics

	Course Articulation Matrix for Mathematical Statistics																					
СО			Prog	ramme	Outco	mes					Pro	gramm	e Speci	fic Outo	comes	omes						
	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog					
	1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8									Level												
CO 1	- 3 3 1 3 1 1 3 3 1 3 1 1 -										К3											
CO 2	- 3 3 1 3 1 1 3 3 1 3 1 1 3 3 1 3 1								-	К2												
CO 3	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3					
CO 4	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3					
CO 5	- 3 3 1 3 1 1 - - 3 3 1 3 1 1 -										К3											
Avg.	- 3 3 1 3 1 1 - - 3 3 1 3 1 1 -																					
	2 2																					

Course title:	Numerical Methods							
Course Code	111MT5M03							
Credits	5							
Hours / Cycle	6							
Category	Mandatory							
Semester	V							
Year of Implementation	AY 2023-24							
Course Structure	Theory	Tutorial	Practical	Total Hours				
Course structure	90 0 0 90							
Learning Objectives:	To obtain numerical solutions of algebraic and transcendental equations, learn about various interpolating and extrapolating methods, solve initial value problem in differential equations using numerical methods.							
Course Outcome(s)	PSO Addressed Bloom's Taxonomy Levels							

CO1: Remember various methods of solving algebraic and transcendental equations, difference operators, interpolation formula and formulae for solving ordinary differential equations	PSO2, PSO3, PSO4 PSO5, PSO7	K1
CO2: Examine iterative, bisection, Regular – Falsi, Newton Raphson method and various interpolation formula. Discuss numerical differentiation and integration and various methods to find numerical solution for ordinary differential equations.	PSO2, PSO3, PSO4 PSO5, PSO7	K2
CO3: Solve algebraic and transcendental equation and ODE using specific methods. Apply interpolation formulae, difference operator and concepts in numerical differentiation and integration.	PSO2, PSO3, PSO4 PSO5, PSO7	K3
CO4: Analyze types of algebraic and transcendental equations, summation of series, divided differences, interpolation, derivatives using Newton's difference formula and some methods for solving ODE.	PSO2, PSO3, PSO4 PSO5, PSO7	K4
CO5: Evaluate the difference table, forward, backward, divided differences, ODE using Taylor series, Picard, Euler and Runge – Kutta methods. Assess equations using iterative method, Bisection method, Regular Falsi method, Newton Raphson method.	PSO2, PSO3, PSO4 PSO5, PSO7	K5

	Syllabus: Numerical Methods	1	1	l.
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	UNIT I Algebraic and Transcendental Equations: Introduction, Errors in numerical computation, Iterative method, Bisection method, Regula-Falsi method, Newton-Raphson method. Chapter 3: Sections 3.0 – 3.5	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5
II	UNIT II Finite Differences: Difference operators, other difference operators, Error propagation in a difference table, Summation of series. Chapter 6: Sections 6.0 – 6.3	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	UNIT III Interpolation: Introduction, Newton's interpolation formulae, Bessels's and Stirling's formula, Lagrange's interpolation formulae, Divided differences, Newton's divided differences formula, Inverse interpolation. Chapter 7: Sections 7.0 – 7.6	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5
IV	UNIT IVNumerical Differentiation and Integration:Introduction, Derivatives using Newton's forwarddifference formula, Derivatives using Newton'sbackward difference formula, Numerical integration –Trapezoidal rule, Simpson's one – third, three –eighth rule, Weddle's rule.Chapter 8: Sections 8.0 – 8.2, 8.5	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5
V	UNIT V Numerical Solutions of Ordinary Differential Equations: Introduction, Taylor's series method, Picard's method, Euler method, Runge-Kutta methods, Predictor-Corrector methods – Milne's method, Adam- Bashforth method. Chapter 10: Sections 10.0 – 10.7	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5

Numerical Methods, S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, SCITECH Publications Pvt. Ltd., Chennai, 2001.

Reference Books

1. Numerical Analysis, B. D. Gupta, Konark Publishers PVT LTD, New Delhi 2003.

2. Numerical Methods, First Edition, P. Kandaswamy, K. Thilagavathy, K. Gunavathi, S. Chand & Company LTD, New Delhi, 1997.

3. Numerical Methods, V. N. Vedamurthy, N.Ch.S.N. Iyengar, Vikas Publishing House Pvt. LTD, New Delhi, 1998.

Web Resources

1. https://archive.nptel.ac.in/courses/111/107/111107105/

2.

3.

				С	ourse	Artic	ulation	n Matr	ix for	Num	erical	Metho	ods									
СО			Progr	amme	Outc	omes					Progr	amme	Speci	fic Ou	itcome	omes						
	РО	PO	PO	PO	Р	Р	PO	PO	PS	PS	PS	PS	PS	PS	PS	PS	Cog					
	1	2	3	4	0	0	7	8	0	0	0	0	0	0	0	O	Leve					
					5	6			1	2	3	4	5	6	7	8	1					
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1					
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2					
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3					
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4					
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	К5					
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-						

Course title:	Programming in C							
Course Code	111MT5M04							
Credits	5							
Hours / Cycle	6							
Category	Mandatory							
Semester								
Year of Implementation	AY 2011-12							
Course Structure	Theory	Tutorial	Practical	Total Hours				
	90	0	0	90				
Learning Objectives:	To learn the syntax and f structure. To gain the kn programs and application	owledge and	skills requir	red to create				
Course Outcome(s)	PSO Addressed	Blo	oom's Taxor	nomy Levels				
CO1: Remember and recall the general form of C statements and basis of C programming.	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7		K1					
CO2: Discuss functions of various keywords involved in a C program.	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7		K2					
CO3: Apply the concepts of loops, arrays, structures, pointers and files in programs to solve mathematical problems	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7							
CO4: Analyze C statements and identify the solution of a mathematical problem with output of a C program.	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7							
program.CO5: Design algorithm and write programs in C language for the given mathematical problems.PSO2, PSO3, PSO4,PSO5, PSO6, PSO7								

	Syllabus: Programming in C			
Unit	Content	Hours	COs	Bloom's Taxonomy Level

I	UNIT I Constants, Variables and Data Types – Operators and Expressions – Managing Input and Output Operations Chapters: 2, 3, 4.	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
П	UNIT II Decision Making and Branching – Decision Making and Looping Chapters: 5, 6	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	UNIT III Arrays – Character Arrays and Strings Chapters: 7, 8	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	UNIT IV User Defined Functions – Structures and Unions Chapters: 9, 10	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V Pointers – File Management in C Chapters: 11, 12	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

Programming in ANSI C (4th Edn.), E. Balagurusamy, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 2008.

Reference Books

- 5. Computer Programming in C, V. Rajaraman, Prentice-Hall of India Pvt. Ltd., New Delhi, 1994.
- 6. Programming in C, P. Pandiyaraja, Vijay Nicole Imprints Pvt. Ltd., Chennai, 2005.
- 7. The C Programming Language, B.W. Kernighan and D.M. Ritchie, Prentice-Hall of India Pvt. Ltd., New Delhi, 1986.
- 8. Programming with C, B.S. Gottfried, Schaum's Outline Series, Tata McGraw-Hill, New Delhi, 1995.

Web Resources

13. https://nptel.ac.in/courses/106104128

- 14. https://www.youtube.com/playlist?list=PLRp3GssE9VZP80tWkbF984SDuPfOdZvSg
- 15. <u>https://www.w3schools.in/category/c-tutorial/</u>

	Course Articulation Matrix for Programming in C																
СО			Progra	amme	Outc	omes			Programme Specific Outcomes								
	PO	РО	РО	PO	Р	Р	PO	РО	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	Ο	Ο	7	8	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	2	3	3	1	2	-	-	3	2	3	3	1	2	-	K1
CO 2	-	3	3	3	3	1	1	-	-	3	3	3	3	1	1	-	K2
CO 3	-	3	2	3	2	3	1	-	-	3	2	3	2	3	1	-	К3
CO 4	-	3	2	3	2	3	1	-	-	3	2	3	2	3	1	-	K4
CO 5	-	3	2	3	2	3	1	-	-	3	2	3	2	3	1	-	К5
Avg.	-	3	2.2	3	2.4	2.2	1.2	-	-	3	2.2	3	2.4	2.2	1.2	-	

Course Articulation Matrix for	Programming in C
--------------------------------	------------------

Course Title		COMPLEX ANALYSIS								
Course Code		111MT6M01								
Credits	5									
Hours / Cycle		6								
Category	Mandatory									
Semester	VI									
Year of		2011-12								
Implementation										
Course Structure	Theory	Tutorial	Practical	Total Hours						
Course structure	90	0	0	90						
Course Objectives	Course Objectives To acquire the knolwdge of analytic functions, harmonic functions and conformation mappings together with the idea of Taylor's and Laurent's series. To gain the									

CO #	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)			
CO 1	Remember function of a complex variable, mappings, conformal mappings, contours, convergence of sequence and series of complex numbers and residues at poles.	PSO1 PSO2 PSO4	K1			
CO 2	: Examine theorems on limits, linear fractional transformations, derivatives and antiderivatives of analytic functions, absolute and uniform convergence of power series types of isolated singularities.	PSO1 PSO2 PSO3 PSO4 PSO5	K2			
CO 3	Apply Cauchy-Riemann equations, mappings of upper half plane, Cauchy's integral formula, Taylor's series and Cauchy's residue theorem.	PSO1 PSO2 PSO3 PSO4	K3			
CO 4	Analyze sufficient conditions for analyticity cross- ratios and fixed point, Liouville's theorem and Fundamental theorem of algebra and improper real integrals.	PSO1 PSO2 PSO3 PSO4 PSO5	K4			
CO 5	Evaluate harmonic functions, special linear fractional transformations, maximum modulus principle, integration and differentiation of power series and definite involving over a unit circle.	PSO1 PSO2 PSO3 PSO4	K5			

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Analytic functions: Functions of a Complex variable, Mappings, limits, Theorem on limits, Continuity, derivatives, differentiation formulas, Cauchy Riemann equations, sufficient conditions, Polar coordinates, Analytic functions, Harmonic functions Chapter 2: Sections 11, 12, 14, 15, 17 - 25	16	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
II	Conformal mapping – preservation of angles, Linear fractional transformations, an implicit form, mappings	16	CO1 CO2	K1 K2

	of the upper half plane, special linear fractional		CO3	K3
	transformations, $w = z_2$, $w = e_z$. Chapter 9: Section 94, Chapter 8: Sections 86 – 88, 90, Chapter 2: Section 13		CO4 CO5	K4 K5
III	. Integrals : Contours, Contour integrals, upper bounds for moduli of contour integrals, Anti derivatives, Cauchy Goursat theorem, Proof of the Cauchy Goursat theorem, Simply and Multiply connected domains,– Cauchy integral formula – Derivatives of Analytical functions. Liouville's theorem and Fundamental theorem of Algebra.– Maximum modulus principle. Chapter 4: Sections 38 – 50	20	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Convergence of sequence, Convergence of series, Taylor's series, Laurent series, Absolute and uniform convergence of power Series, Continuity of sums of power series, Integration and differentiation of power series. Uniqueness of series representation Chapter 5: Sections 51 – 60	19	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
V	. Residues – Cauchy Residue theorem, Using a single residue, The three types of isolated singular points, Residues at poles, Zeros of analytical functions, Zeros and poles, Evaluation of real improper integrals, improper integrals from Fourier Analysis, Jordans lemma, Definite integrals involving sines and cosines. Chapter 6: Sections 62 – 69, Chapter 7: Sections 71 – 74, 78	19	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
Complex	ed Books/Textbooks (1-5 books) x variables and application Seventh Edition by James W ll Book Co., International Student Edition, 2003.	ard Brown a	and Ruel	V. Churchill, Mc-
Reference 1.Comple 2. Comple publication 3. Comple Printers & Suggeste 1.Comple	ces ex Analysis, Theodore W. gamelan, Springer Verlag, 2008 lex Analysis, S.Arumugam, A.Thangapandi Isaac, A.Soma ons(India)Pvt,Ltd.Dec2010. lexAnalysis, T.K.ManicavachagomPillay, Dr.S.P.Rajagopa & Publishers Pvt. Ltd., 2008. ed Reading ex Analysis, S.G.Venkatachalapathy, Margham Publicatio of functions of a Complex Variable, Shanti Narayan, Dr.	asundaram,S alan, Dr.R.S n 2009.	attanathan	
	sources https://archive.nptel.ac.in/courses/111/103/11110307 https://ocw.mit.edu/courses/18-04-complex-variable		lications-	spring-2018/

Со	Prog	Programme Outcomes								Programme Specific Outcomes						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	PS O 7	Level	
CO 1	3	3	2	2	1	-	-	3	3	2	2	1	-	-	K1	
CO 2	3	3	3	2	1	-	-	3	3	3	2	1	-	-	K2	
CO 3	3	2	3	2	1	-	-	3	2	3	2	1	-	-	K3	
CO 4	2	3	3	2	2	-	-	2	3	3	2	2	-	-	K4	
CO 5	3	3	2	2	-	-	-	3	3	2	2	-	-	-	K5	
Avg.	2.8	2.8	2.6	2	1	-	-	2.8	2.8	2.6	2	1	-	-		
Avg		1	1	1.6					1		1.6	1	1	1		

Correlation of POs/PSOs to each CO and make a corresponding mapping table.

CO 4	2	3	3	2	2	-	-	2	3	3	2	2	-	-	K4
CO 5	3	3	2	2	-	-	-	3	3	2	2	-	-	-	K5
Avg.	2.8	2.8	2.6	2	1	-	-	2.8	2.8	2.6	2	1	-	-	
Avg				1.6							1.6				
Cou	rse title	e:			Me	chanics									
Cou	rse Coo	le			111	MT6M0	2								
Cre	dits				5										
Ηοι	irs / Cyo	cle			6										
Cate	egory								Ν	/landat	ory				
Sem	nester									VI					

Course title:	Mechanics							
Course Code	111MT6M02							
Credits		5						
Hours / Cycle		6						
Category		Mandate	ory					
Semester		VI						
Year of Implementation	AY 2011-12							
Course Structure	Theory	Tutorial	Practical	Total Hours				
	90	0	0	90				
Learning Objectives:	To learn about the bodies at rest or forces in equilibrium and about the motion of bodies under the action of forces							
Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels						
CO1: Recall concurrent system of forces, friction, types of friction, energy. Recall definitions of simple harmonic motion, seconds pendulum, conical pendulum, banked up track, central of force, apse	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К1						
CO2: Discuss triangle of forces, polygon of forces, laws of friction, path of a projectile,	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К2						

composition of two simple		
harmonic motions, motion of a		
body on curved track, banked		
up track, differential equation		
of a central orbit in Cartesian		
and p-r coordinates		
CO3: Application of		
parallelogram of forces, triangle		
of forces, polygon of forces.		
Illustration of the force of		
friction, conservation of energy,	PSO2, PSO3,	
the cases with reference to the	PSO4,PSO5,PSO6,PSO7	К3
simple pendulum. Classification	1 304,1 303,1 300,1 307	
of the motion of a body on a		
vertical curve, outside/ inside of		
a smooth vertical circle; p-r		
equation of different curves		
CO4: Analyse moment of a		
force, ladder problems,		
conservation of energy.		
Investigate the range of a	PSO2, PSO3,	К4
projectile with reference to the	PSO4,PSO5,PSO6,PSO7	K4
inclined plane, motion of a		
body under different		
conditions, inverse square law		
CO5: Construct Lami's		
theorem, Varignon's theorem.		
Justify principle of conservation		
of energy, cases with respect to		
the simple pendulum,	PSO2, PSO3,	К5
differential equation of a	PSO4,PSO5,PSO6,PSO7	
central orbit. Assess the nature		
of the motion of a body in		
different parts.		

	Syllabus Mechanics			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	 UNIT I – Statics: Concurrent system of forces: Triangle law of forces, Lami's Theorem, Polygon law of forces, Moment of a force, Varignon's Theorem. Chapter 2: Sections 2.1 – 2.9, 2.12 – 2.13, 2.14 – 2.16, Chapter 3: Sections 3.6, 3.7 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
II	UNIT II – Friction: Laws of friction, Angle of friction, Ladder problems. Chapter 4: Sectio Dynamics - Energy: Kinetic energy, Conservation of energy, Conservation forces. Chapter 3: Sections 3.8 – 3.14ns 4.1 – 4.5	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

	UNIT III – Projectiles: Trajectory, Horizontal and inclined planes. S.H.M : General solution, Elastic strings, Composition of two S.H.M, Simple Pendulum, Seconds Pendulum. Chapter 5: Sections 5.1 – 5.7, Chapter 8: Sections 8.1 – 8.4, Chapter 9: Sections 9.3 – 9.5	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	UNIT IV – Motion of a particle along a curve: Conical Pendulum, Motion on a curved track, Circular track, Banked up track, Vertical curve, Motion on the outside of a smooth vertical circle, inside a vertical circle. Chapter 9: Sections 9.8 – 9.14	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V – Central Orbits: Central forces, Differential equation of a central orbit, Pedal equation, Apse, p-r equation, Inverse square law. Chapter 10: Sections 10.1 – 10.8, 10.11	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

- 3. Statics, K.Viswanatha Naik, M.S.Kasi, Emerald Publishers, (1992)
- 4. Dynamics, K. Viswanatha Naik, M.S. Kasi, Emerald Publishers, 1992.

Reference Books

- 1. Mechanics, P.Duraipandian, Laxmi Duraipandian, Muthamizh Jayapragasam, S.Chand & Company Ltd publications, 2010.
- 2. A text book of Statics, Dr. M.K. Venkataraman, Agasthiar Publications, 1994.
- 3. A text book of Dynamics, Dr. M.K. Venkataraman, Agasthiar Publications ,1994.

Web Resources

16. <u>https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/</u>

17. https://www.coursera.org/specializations/introduction-to-mechanics

	Course Articulation Matrix for Mechanics																
СО	Programme Outcomes								Programme Specific Outcomes								
	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cog
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	Level
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	К1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	К2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3

CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	К4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	К5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	

Course title:	Linear Programming								
Course Code	111MT6M03								
Credits		4							
Hours / Cycle		5							
Category		Mandatory							
Semester		VI							
Year of Implementation	AY 2023-24								
Course Structure	Theory	Tutorial	Practical	Total Hours					
Course Structure	75	0	0	75					
Learning Objectives:	To make the students bee and enrich knowledge to methods. To impart Optimization	o formulate							
Course Outcome(s)	PSO Addressed	Blo	oom's Taxor	nomy Levels					
CO1: Recall the concepts of general linear programming, degeneracy in linear programming, general primal – dual pair, transportation problem and assignment problem	PSO2, PSO3, PSO4 PSO5, PSO7	K1							
CO2: Explain the mathematical formulation of linear programming problem, fundamental properties of solutions, formulation of a dual problem, existence of solution in transportation problem and basic terms used in sequencing.	PSO2, PSO3, PSO4 PSO5, PSO7	K2							
CO3: Solve the linear programming using graphical method, simplex method, Big – M method	PSO2, PSO3, PSO4 PSO5, PSO7	K3							

and duality principle. Illustrate the degeneracy in transportation problem and special cases in Assignment problem.		
CO4: Analyse the solutions of LPP using graphical method, Big - M method, principal of duality and transportation problem, Assignment problem.	PSO2, PSO3, PSO4 PSO5, PSO7	K4
CO5: Evaluate the LPP problems using graphical method, Simplex method, Duality principle, Transportation algorithm and problem of sequencing.	PSO2, PSO3, PSO4 PSO5, PSO7	K5

	Syllabus: Linear Programming			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	Unit I Linear programming Problem - Mathematical Formulation - Graphical Solution and Extension: Introduction - Linear Programming Problem – Mathematical formulation of L.P.P – Illustration on Mathematical formulation of L.P.P. Graphical Solution Method – Some Exceptional Cases – General Linear Programming Problem –Canonical and Standard Forms of L.P.P. Chapter 2: Sections 2.1 – 2.4, Chapter 3: Sections 3.1 – 3.5	14	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
II	Unit II Linear programming Problem - Simplex Method: Introduction - Fundamental Properties of Solutions (Theorems-Statement only)-The Computational Procedure-Use of Artificial Variables (only Big-M Method or Method of Penalties)-Degeneracy in Linear Programming. Chapter 4: Sections 4.1 – 4.5	16	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

III	Unit III Duality in Linear Programming: Introduction – General Primal-Dual Pair-Formulating a Dual Problem- Primal-Dual Pair in Matrix Form-Duality Theorems-Complementary Slackness Theorem- Duality and Simplex Method. Chapter 5: Sections 5.1 – 5.7	16	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	Unit IV Transportation Problem: Introduction – LP formulation of the transportation Problem – Existence of solutions in T.P-Duality in Transportation Problem- The Transportation table-Loops in Transportation tables-Triangular Basis in a T.P-Solution of a Transportation Problem –Finding an Initial Basic Feasible Solution –Test for Optimality-Economic Interpretation of u_j and v_j - Degeneracy in Transportation Problem – Transportation Algorithm(Modi Method)-Stepping Stone Solution Method-Some Exceptional Cases. Chapter 10: Sections 10.1 – 10.15	16	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	 UNIT V Assignment Problem: Introduction- Mathematical Formulation of the problem-Solution Methods of Assignment Problems –Special Cases in Assignment Problem. Sequencing Problem: Introduction-Problem of Sequencing-Basic terms Used in Sequencing- Processing n jobs through Two Machines. Chapter 11: Sections 11.1 – 11.4; Chapter 12: Sections 12.1 – 12.4 	13	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

Numerical Methods, S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, SCITECH Publications Pvt. Ltd., Chennai, 2001.

Reference Books

1. Numerical Analysis, B. D. Gupta, Konark Publishers PVT LTD, New Delhi 2003.

2. Numerical Methods, First Edition, P. Kandaswamy, K. Thilagavathy, K. Gunavathi, S. Chand & Company LTD, New Delhi, 1997.

3. Numerical Methods, V. N. Vedamurthy, N.Ch.S.N. Iyengar, Vikas Publishing House Pvt. LTD, New Delhi, 1998.

- 1. <u>https://nptel.ac.in/courses/112106134</u>
- 2. <u>https://www.youtube.com/watch?v=4U3B5lr-MqM</u>
- 3. <u>https://onlinecourses.swayam2.ac.in/cec23_ma02/preview</u>

				Сс	ourse 1	Articu	ilation	ı Matri	x for	Linea	r Prog	ramm	ing				
СО			Progra	amme	Outc	omes			Programme Specific Outcomes								
	PO	РО	РО	РО	Р	Р	PO	РО	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	Ο	Ο	7	8	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	K5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	

Course title:	Astronomy									
Course Code	111MT6M04									
Credits		4								
Hours / Cycle		5								
Category	Mandatory									
Semester		V								
Year of Implementation	AY 2011-12									
Course Structure	Theory	Tutorial	Practical	Total Hours						
	75 0 0 75									
Learning Objectives:	To understand the fundamentals of spherical trigonometry and apply it to study the motion of celestial bodies and celestial phenomena									

Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels
CO1: Recall the fundamentals of spherical trigonometry and celestial sphere, refraction, planetary motion, measurement of time, cycles of moon, eclipses	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К1
CO2: Discuss the mathematical principles related to celestial sphere, solar system, conversion of time, phases of moon and occurrence of eclipses.	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К2
CO3: Illustrate the applications of trigonometry in the study of celestial sphere and celestial objects, solve problems related to conversion of time	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	КЗ
CO4: Investigate the patterns in the motion of celestial object and its effects on observation, time keeping for astronomical calculations	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К4
CO5: Evaluate the motion of celestial objects and methods of time keeping	PSO2, PSO3, PSO4,PSO5,PSO6,PSO7	К5

	Syllabus: Differential Geometry & Analytical Geometry	/ of 3-dimen	sions	
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	Spherical Trigonometry: Sphere – Great circles and small circles – axis and poles of a circle – Distance between two	17	C01 CO2	K1,K2,K3,
	points on a sphere – angle between two circles – Secondaries – angular radius – length of an arc of a small circle – spherical	17	CO3 CO4	К4,К5
			C05	

	triangle – cosine formula, sine formula, cotangent formula (without proof) Celestial Sphere: Celestial sphere – diurnal motion, celestial axis and equator – celestial horizon – Zenith and Nadir – Celestial Meridian – Cardinal points – Declination circles – Verticals – Parallactic angle – Rising and setting – Transit or culmination – due east, west, north, south – annual motion of sun – First point of Aries and First point of Libra – Equinoxes and Solstices – Celestial coordinates – Horizontal, Equatorial, Meridian, ecliptic systems – Hour Angle and azimuth at rising and setting – latitude of a place – Circumpolar Star – Twilight. Chapter I: Sections 1 – 8, 11 – 13, 21 – 23, Chapter II: Sections 39 – 82, Chapter III: Sections 111 – 116			
11	Refraction: Laws of refraction – Astronomical refraction – Tangent formula – General effects – Effects on rising or setting – Effect on R.A, declination – effect on small horizontal arc, vertical arc, any small arc – Cassini's Formula – Horizontal refraction Concepts of geocentric, heliocentric parallax, aberration, Precession and Nutation (definitions only) Overview of the universe – The solar system in general – the other planets – comets – galaxies. Chapter IV: Sections 117 – 131, Chapter V: Sections 135, 136, 140 – 145, Chapter VIII: Sections 190, 191, 194, Chapter IX: Sections 195, 196, Chapter X: Sections 204 – 206 Chapter XVII: Sections 327 - 340	15	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5
	 Kepler's Laws: Kepler's Laws of planetary motion – Longitude of Perigee – Forward motion of the apse line – eccentricity of earth's orbit – To fix the position of a planet in its elliptical orbit – To express v as a series of u- mean anomaly – Kepler's equation – To express u as a series in m. Planetary Phenomena: Phases of the planets – Relation between sidereal and synodic period of a planet, brightness of the planets. Chapter VI: Sections 146-149,156-160, Chapter XIV: Sections 285 – 297. 	15	C01 CO2 CO3 CO4 C05	К1,К2,К3, К4,К5
IV	Time: Equation of time – Seasons – Calendar – Conversion of time Chapter VII: Sections 166 – 170, 172 – 189	13	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5
V	Moon: Relation between sidereal and synodic month – elongation – Phases of moon. Eclipses: Umbra and Penumbra – Lunar eclipse – Solar eclipse – Condition for occurrence of a solar eclipse – angular radius of the cross section of the shadow cone where moon enters –	15	C01 CO2 CO3 CO4 C05	K1,K2,K3, K4,K5

[
	length of earth's shadow – condition for the occurrence of a		
	solar eclipse – ecliptic limits – maximum and minimum number		
	of eclipses near a node - in a year – Saros of Chaldeans		
	Chapter XII: Sections 229-241, Chapter XIII: Sections 256 – 275		

Prescribed Books/Textbook(s) Mathematical Statistics, J. N. Kapur and H. C. Saxena, 20th Edition, S. Chand & Co. Ltd., New Delhi, 2010. Astronomy by S. Kumaravelu and Susheela Kumaravelu, 2005. Reference Books 1. Text Book on Spherical Astronomy, Sixth Edition, W.M. Smart, VIKAS Publishing House Pvt. Ltd., 1979. 2. Exploration of the Universe, Second Edition, George Abell, 1981. Web Resources <u>https://stellarium.org/</u> <u>https://theskylive.com/planetarium</u>

		Cours	se Artic	ulation	Matri	x for [Differer	ntial Ge	ometry	/ & Ana	lytical	Geome	try of 3	-dimer	isions		
CO		Programme Outcomes								Programme Specific Outcomes							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	Cog Level
CO 1	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 2	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К2
CO 3	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 4	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
CO 5	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	К3
Avg.	-	3	3	1	3	1	1	-	-	3	3	1	3	1	1	-	
				2									2				

Course title:	Formal Language and Graph Theory
---------------	----------------------------------

Course Code	111MT6M06									
Credits		5								
Hours / Cycle	<u> </u>									
Category		÷	Orv							
Semester	VI									
Year of Implementation	AY 2023-24									
*	Theory	Tutorial	Practical	Total Hours						
Course Structure	90	0	0	90						
Learning Objectives:	To understand the funda importance.	mental conc	epts in grap	h theory and its						
Course Outcome(s)	PSO Addressed	Blo	om's Taxor	nomy Levels						
CO1: Recall the types of grammars, concept of automaton, types of automata, basic definitions and fundamental theorem of graphs.	PSO1, PSO2, PSO3, PSO4 PSO5, PSO7		K1							
CO2: Examine the closure properties of grammars in the Chomskian hierarchy, normal form of CFG. Explain the graph structures and their properties and discuss the applicability of those concepts in real life problems.	PSO1, PSO2, PSO3, PSO4 PSO5, PSO7 K2									
CO3: Illustrate the relation between grammars, languages and automata. Classify the Eulerian and Hamiltonian circuits.	PSO1, PSO2, PSO3, PSO4 PSO5, PSO7	К3								
CO4: Identify the types of grammars and related languages. Analyse the graph isomorphisms, connectivity concepts.	PSO2, PSO3, PSO4 PSO5, PSO7	K4								
CO5: Evaluate the types of grammars and construct the corresponding automata. Construct the principles for various graphs and trees.	PSO2, PSO3, PSO4 PSO5, PSO7		K5							

	Syllabus: Formal Languages and Grap	h Theory		
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	 UNIT I – Phrase-Structure languages, Closure properties: Four types of grammars, Chomskian hierarchy, Closure operations, Derivation trees, Ambiguity. Chapter 2: Sections 2.1 – 2.4, Chapter 3: Sections 3.1, 3.2, Chapter 4: Sections 4.1, 4.2 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
II	 UNIT II - Normal form of CFG, Property of CFL: Auxiliary lemmas, Chomsky Normal form, u-v theorem. Chapter 4: Sections 4.3, 4.4 (up to Theorem 4.1 and examples 4.10, 4.11, 4.12), 4.5 (up to Theorem 4.3 and example 4.15) 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	 UNIT III - Finite State Automata: Finite Automaton, Non-Deterministic Finite Automaton, Finite Automata and Regular sets, Closure properties of Regular sets, Characterization of the family of Regular sets. Chapter 5: Sections 5.1 – 5.4 (up to Theorem 5.7 and examples using it) 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	 UNIT IV - Introduction, Paths and Circuits: Graphs, Incidence and degree of a vertex, Walks, Paths and Circuits, Euler graphs, Operations on graphs, Hamiltonian paths and circuits, Travelling Salesman Problem. Chapter 1: Sections 1.1 – 1.6, Chapter 2: Sections 2.1 – 2.10 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	 UNIT V - Trees, Fundamental Circuits, Cut-sets and Cut-vertices: Trees, Properties of trees, On counting trees, Spanning trees, Fundamental circuits, Cut-sets, Properties of cut-sets, Connectivity and separability. Chapter 3: Sections 3.1 – 3.10, Chapter 4: Sections 4.1 – 4.5 	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

- 1. Formal Languages and Automata, Rani Siromoney, CLS, 1984.
- 2. Graph Theory with Applications to Engineering and Computer Science, Narsingh Deo, Prentice Hall of India Pvt. Ltd., 2005.

Reference Books

- 1. D.P. Acharjya, Theory of Computation, MJP Publications, 2010.
- 2. 2. Peter Linz, An Introduction to Formal Languages and Automata, Narosa Publications, Fourth Edition, 2010.
- 3. S.P. Rajagopalan and R. Sattanathan, Graph Theory, Margham Publications, Chennai, 2009.
- 4. 5. S. Arumugam and S. Ramachandran, Invitation to Graph Theory, SCITECH Publications (India) Pvt. Ltd., Chennai, 2002.

Suggested Reading:

- 1. Kamala Krithivasan and R. Rama, Introduction to Formal Languages, Automata Theory and Computation, Pearson, Chennai, 2011.
- 2. S.A. Choudum, A First Course in Graph Theory, Macmillan India Ltd., New Delhi, 1999.

- 1. https://archive.nptel.ac.in/courses/106/103/106103070/#
- 2. <u>https://ocw.mit.edu/courses/6-045j-automata-computability-and-complexity-spring-2011/pages/lecture-notes/</u>
- 3. <u>https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf</u>
- 4. https://archive.nptel.ac.in/courses/111/106/111106102/
- 5. http://discrete.openmathbooks.org/dmoi3/sec_trees.html

	Course Articulation Matrix for Formal Languages and Graph Theory																
СО	CO Programme Outcomes								Programme Specific Outcomes								
	РО	РО	РО	PO	Р	Р	Р	PO	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	0 5	0 6	07	8	01	0 2	0 3	0 4	0 5	0 6	0 7	0 8	Level
						0								0		0	
CO 1	2	3	1	1	2	-	1	-	2	3	1	1	2	-	1	-	K1
CO 2	1	3	2	1	3	-	1	-	1	3	2	1	3	-	1	-	K2
CO 3	1	2	2	1	3	-	1	-	1	2	2	1	3	-	1	-	К3
CO 4	-	3	1	1	2	-	1	-	-	3	1	1	2	-	1	-	K4
CO 5	-	3	2	1	2	-	1	-	-	3	2	1	2	-	1	-	K5

Avg.	0.8	2.8	1.6	1	2.4	-	1	-	0.8	2.8	1.6	1	2.4	-	1	-	
Avg.	1.2								1.	.2							

Course title:	Computer Training									
Course Code	111MT6M05									
Credits		3								
Hours / Cycle	2									
Category		Skill Ba	sed							
Semester		VI								
Year of Implementation	AY 2011-12									
Course Structure	Theory	Tutorial	Practical	Total Hours						
Course structure		0	30	30						
Learning Objectives:	To impart basic knowled commands for simple ma mathematical structures	athematical p	problems. To	0						
Course Outcome(s)	PSO Addressed	Blo	nomy Levels							
CO1: To recall the basics of MAXIMA and compile simple programs and graphics	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7									
CO2: Discuss mathematical library functions of MAXIMA	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7									
CO3: Apply MAXIMA built in functions provided to solve all types of mathematical and scientific problems and to use the graphics.	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7		K3							
CO4: Analyze MAXIMA codes for debugging.	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7	K4								
CO5: Assess MAXIMA codes to handle mathematical concepts.	PSO2, PSO3, PSO4,PSO5, PSO6, PSO7									

Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	UNIT I Introduction to Maxima, Equations – Find Roots, Roots of Polynomials, Solve Linear Systems, Solve Algebraic Systems, Solve ODE, Initial Value Problems, Boundary Value Problems, Solve ODE with Laplace.	6	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
Π	UNIT II Algebra – Generate Matrix, Generate Matrix from Expression, Enter Matrix, Invert Matrix, Characteristic Polynomial, Determinants, Eigenvalues, Eigenvectors, Adjoint Matrix, Transpose Matrix.	6	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	UNIT III Calculus – integration, Change Variables, Differentiation, Find Limits, Find Minimum, Get Series, Calculate Sum, Calculate Product, Laplace Transform, Inverse Laplace Transform, Greatest Common Divisor, Least Common Multiple, Divide Polynomials, Partial Fractions, Continued Fractions.	6	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	UNIT IV Simplify – Simplify Expressions, Simplify Radicals, Factor Expression, Factor Complex, Expand Expression, Expand Logarithms, Contract Logarithms, Factorials and Gamma, Trigonometric Simplification, Complex Simplification.	6	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V Plot – Plot 2D, Plot 3D, Plot Format; Numeric – Toggle Numeric Output, To Float, To Bigfloat, Set Precision, Solving Linear Programming Problems – Simplex Methods.	6	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

Prescribed Books/Textbook(s) Reference Books

Maxima 5.25.0 Manual

(Internet Source: http://andrejv.github.com/wxmaxima/help.html)

- <u>https://maxima.sourceforge.io/</u>
 <u>file:///C:/maxima-5.47.0/share/doc/wxmaxima/wxmaxima.html</u>

		Course Articulation Matrix for Computer Training															
СО			Progra	amme	Outc	omes			Programme Specific Outcomes								
	PO	РО	РО	PO	Р	Р	PO	РО	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	Ο	Ο	7	8	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	2	3	2	3	1	-	-	3	2	3	2	3	1	-	K1
CO 2	-	3	2	3	3	3	1	-	-	3	2	3	3	3	1	-	K2
CO 3	-	3	2	3	3	3	1	-	-	3	2	3	3	3	1	-	К3
CO 4	-	3	2	3	3	3	1	-	-	3	2	3	3	3	1	-	K4
CO 5	-	3	2	3	3	3	1	-	-	3	2	3	3	3	1	-	K5
Avg.	-	3	2	3	2.8	3	1	-	-	3	2	3	2.8	3	1	-	
				•		-		*					•	*	•		

Course title:	Allied Mathematics I (Fo	r both Physi	cs and Chem	istry)				
Course Code	111MT1A01							
Credits		5						
Hours / Cycle		6						
Category		Allied	1					
Semester		II						
Year of Implementation	AY 2023-24							
Course Structure	Theory	Tutorial	Practical	Total Hours				
Course structure	90	0	0	90				
Learning Objectives:	To improve problem solving and analytical skills in differentiation							
Learning Objectives.	and integration, apply the knowledge of direction cosines and							
	direction ratios in straigh	it lines and p	lanes.					

Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels
CO1: Recall the concepts of partial differentiation, Jacobian, definite integrals, direction cosines, directions ratios, reciprocal equations, Fourier series and Cayley Hamilton Theorem.	PSO2, PSO3, PSO4 PSO5, PSO7	K1
CO2: Explain the total differential coefficient, properties of definite integral, even and odd functions, three forms of an equation of a plane, relation between the coefficients and the roots of an algebraic equation.	PSO2, PSO3, PSO4 PSO5, PSO7	K2
CO3: Solve the problems related to maxima and minima of function of two variables, integration of irrational functions, second order linear differential equations with constant coefficients, reciprocal equations, angle between two planes.	PSO2, PSO3, PSO4 PSO5, PSO7	К3
CO4: Analyze the properties of Jacobians, even and odd functions of Fourier series, properties of definite integral. Investigate the problems on equations of a plane and straight line, eigen values, eigen vectors and rank of matrices.	PSO2, PSO3, PSO4 PSO5, PSO7	K4
CO5: Evaluate problems on Lagrange's method of undetermined multipliers, integration of irrational numbers, Half range Fourier series, length of the perpendicular from the point to a plane and eigen values, eigen vectors of a Matrix.	PSO2, PSO3, PSO4 PSO5, PSO7	K5

	Syllabus: Allied Mathematics I			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
Ι	 UNIT I Introduction to Partial Differentiation - Partial Differentiation - Total differential co-efficient - Euler's Theorem - Maxima and Minima of functions of two variables - Lagrange's method of undetermined multipliers. Chapter 8: Sections 1.1 - 1.6, 4, 5 Jacobian - Definition and simple problems. Chapter 6: Sections 1.1, 2.3, 2.4 	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
Π	UNIT II Introduction - Integration of irrational functions - Methods of integration of the following types only: $\int \frac{dx}{\sqrt{ax^2 + bx + c}}, \int \frac{(px+q)}{\sqrt{ax^2 + bx + c}} dx,$ $\int \sqrt{ax^2 + bx + c} dx, \int (px+q)\sqrt{ax^2 + bx + c} dx,$ $\int \frac{dx}{(x+k)\sqrt{ax^2 + bx + c}}, \int \frac{dx}{(ax^2 + b)(\sqrt{cx^2 + d})}$ Properties of Definite integrals - Integration by parts - Bernoulli's formula. Chapter 1: Sections 8, 11, 12, 15.1	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	UNIT III Second order linear differential equations with constants co-efficients – Methods of finding particular integral of the functions of e^{ax} , sin ax or $\cos ax$, $e^{ax}V(x)$, x^m . Fourier series – Even and odd functions – Half range Fourier series. Chapter 2: Sections 1 – 4; Chapter 6: Sections 1 – 5	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	UNIT IV Analytical geometry of three dimensions: Direction Cosines – direction ratios. The plane: Three forms of an equation of a plane (without derivations) – Angle between the two planes – Length of the perpendicular	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

stra Cha	m a point to the plane (simple problems only) – The ight line. apter 1: Sections 7, 8; Chapter 2: Sections 1 – 3, 7, 10; Chapter 3: Sections 1 – 4			
The betw equ equ Cha Ma vec Cha	NIT V eory of equations: Nature of roots – Relation ween the coefficients and the roots of an algebraic ation – Transformation of equations – Reciprocal ation. apter 6: Sections 9 – 11, 15, 16 trices: Rank of a matrix – Eigen values and Eigen tors – Cayley Hamilton theorem. apter 2: Sections 11 – 16 ferences	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

- 1. Calculus Volume I by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers & Publishers Pvt. Ltd., 2009. (for unit I)
- 1. Calculus Volume II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers& Publishers Pvt. Ltd., 2009. (for unit I)
- 2. Calculus Volumes II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers & Publishers Pvt. Ltd., 2007. (for unit II)
- 3. Calculus Volume III by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers & Publishers Pvt. Ltd., 2007. (for unit III)
- 4. A Textbook of Analytical Geometry Part II Three Dimensions by T. K. Manicavachagom Pillay and T. Natarajan, S. Viswanathan Printers & Publishers Pvt. Ltd., 2009. (for unit IV)
- 5. Algebra Volume I by T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, S. Viswanathan Printers and Publishers Pvt. Ltd., 2004. (for unit V)
- 6. Algebra Volume II by T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, S. Viswanathan Printers and Publishers Pvt. Ltd., 2004. (for unit V)

Reference Books

1. Allied Mathematics (in single volume) P. R. Vittal, Margham Publications, Reprint 2005.

2. Allied Mathematics (For Physics, Chemistry and Computer Science Major Courses of Madras University) by A. Singaravelu (Meenakshi Traders), 2001

Web Resources

18. https://archive.nptel.ac.in/courses/111/106/111106100/

19. https://www.uah.edu/images/people/faculty/howellkb/DEText-Ch16.pdf

				Со	ourse.	Artic	ulation	n Matr	ix for	Allied	Mathe	ematic	s I				
СО			Progra	amme	Outc	omes			Programme Specific Outcomes							ès	
	РО	РО	РО	РО	Р	Р	PO	PO	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	O	0	7	8	0	0	0	0	O	0	O 7	0	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	К3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	К5
Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	

Course title:	Allied Mathematics II (fo	or Chemistry	r)	
Course Code	111MT2A02			
Credits		5		
Hours / Cycle		6		
Category		Allieo	£	
Semester		II		
Year of Implementation	AY 2023-24			
Course Structure	Theory	Tutorial	Practical	Total Hours
Course Structure	90	0	0	90
Learning Objectives	Learn to evaluate multip	le integrals, t	he concept of	of vector differential
Learning Objectives:	operators, the application	ns of Integra	l theorems. '	To impart the
	knowledge of group theo	ory to realize	some conce	epts in chemistry.

Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels
CO1: Remember types of first order partial differential equations, definition of double and triple integrals, gradient, divergence, curl, groups and statement of Gauss divergence, Green's and Stoke's theorem.	PSO2, PSO3, PSO4 PSO5, PSO7	K1
CO2: Examine standard types of PDE, applications of multiple integrals, vector identities, application of integral theorem and the properties of group.	PSO2, PSO3, PSO4 PSO5, PSO7	K2
CO3: Solve PDE of first order, problems on double and triple integral, line, surfaces and volume integrals. Illustrate isomorphism of groups, Cayley's theorem and cyclic groups.	PSO2, PSO3, PSO4 PSO5, PSO7	K3
CO4: Analyze the order and derivative of PDE, change the order of integration, gradient, divergence, curl, integral theorems and properties of groups and cyclic groups.	PSO2, PSO3, PSO4 PSO5, PSO7	K4
CO5: Evaluate standard types of first order PDE, applications of multiple integrals, line, surface and volume integrals, integral theorems and problem in group theory.	PSO2, PSO3, PSO4 PSO5, PSO7	K5

Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	Unit I Partial Differential Equations Introduction to Partial Differential Equations - Order and derivation of Partial Differential Equations, Different integrals of Partial Differential Equations, Solution of Partial Differential Equations in some simple cases, Standard types of first order Partial Differential Equations (standard types I to IV). Chapter 4: Sections 1 – 4, 5.1 – 5.4	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
II	Unit II Multiple Integrals Introduction - Definition of double integral, evaluation of double integral (including changing the order of integration), triple integrals, application of multiple integrals (area enclosed between curves), volume as a triple integral. Chapter 5: Sections 1, 2, 4, 5.1, 6.3	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
III	Unit III Vector Calculus Gradient, Divergence and curl, Vector identities, Line integral, Surface integral, Volume integral. Chapter 2: Sections 1 – 12; Chapter 4: Sections 1 – 5	18	C01 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
IV	Unit IV Vector Integration Statement of Gauss divergence theorem, Green's Theorem, Stokes theorem (without proof) and Applications. Chapter 4: Sections 6 – 10	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5
V	UNIT V Groups Binary operation, Definition of groups, Abelian group, Infinite group, properties of groups, Composition table for finite sets, Addition modulo m, Multiplication modulo m, Permutation and order of an element, cyclic permutation, Integral powers of an element of a group, Isomorphism of groups, Cayley's theorem, cyclic group, Properties of cyclic groups. Chapter 8: Section II: 1 – 6	18	CO1 CO2 CO3 CO4 CO5	K1,K2,K3, K4,K5

1. Calculus – Volume III by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers & Publishers Pvt. Ltd., 2007. (for Unit I)

- 2. Calculus Volume II by S. Narayanan and T. K. Manicavachagom Pillay, S. Viswanathan Printers & Publishers Pvt. Ltd., 2007. (for unit II)
- 3. Ancillary Mathematics Book III by S.Narayanan and T. K. Manicavachagam Pillay, S. Viswanathan Publishers, 1999. (for Unit III)
- 4. Ancillary Mathematics Book III by S. Narayanan and T. K. Manicavachagam Pillay, S. Viswanathan Publishers, 1999. (for unit IV)
- 5. Ancillary Mathematics Book I by S.Narayanan, T. K. Manicavachagom Pillay, Kandaswamy, R. Hanumantha Rao, 1999. (for Unit V)

Reference Books

1. Allied Mathematics by P. R. Vittal, Margham Publications, Reprint 2005.

2. Allied Mathematics – Paper II – Second Semester by P. Kandaswamy and K. Thilagavathy, S. Chand & Co., Reprint 2010.

3. Ancillary Mathematics Paper IV by Arumugam and Isaac, New Gamma Publishing House, 1992.

Web Resources

- 20. https://archive.nptel.ac.in/courses/111/105/111105122/
- 21. https://archive.nptel.ac.in/courses/111/101/111101153/

			Gou	100 1110	irealac	1011 11	iutiin	101 111	lieu III	utileili	acteo 1	1 (101	Gilein	isery)			
СО			Progra	amme	Outc	omes					Progr	amme	Speci	fic Ou	itcome	es	
	PO	PO	PO	PO	Р	Р	PO	PO	PS	PS	PS	PS	PS	PS	PS	PS	Cog
	1	2	3	4	Ο	Ο	7	8	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Leve
					5	6			1	2	3	4	5	6	7	8	1
CO 1	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K1
CO 2	-	3	2	1	3	1	1	-	-	3	2	1	3	1	1	-	K2
CO 3	-	2	2	1	3	1	1	-	-	2	2	1	3	1	1	-	K3
CO 4	-	3	1	1	2	1	1	-	-	3	1	1	2	1	1	-	K4
CO 5	-	3	2	1	2	1	1	-	-	3	2	1	2	1	1	-	K5

Course Articulation Matrix for Allied Mathematics II (for Chemistry)

Avg.	-	2.8	1.6	1	2.4	1	1	-	-	2.8	1.6	1	2.4	1	1	-	

Course title:	Basic Mathem	atics									
	081MT1G01	lutics									
Course Code	081W11IG01										
Credits			2								
Hours / Cycle	4 General Course										
Category	General Course										
Semester			II								
Year of Implementation			2024-25								
Course Structure	Theory Tutorial Practical Total Hour										
Course Objectives:		a structures a	ind real-life s	nowledge of graph situations where							
Course Outcome(s)	PSO Addressed	Blo	om's Taxon (K1 to	iomy Levels K6)							
CO1: Recall basic concepts such as sets, functions, matrices and graphs of well-known functions.	PSO1, PSO2, PSO3	K1									
CO2: Explain the relationship between roots and coefficients, derivatives of simple functions, operations on sets, Compare one-one and onto functions.	PSO1, PSO2, PSO3	K2									
CO3: Apply the Newton's method to solve for roots of polynomials. Apply Cayley Hamilton Theorem to find the inverse of a matrix.	PSO1, PSO2, PSO3, PSO6, PSO7		К3								
CO4: Analyse the sum of, Geometric, Binomial, Exponential and Logarithmic series. Analyse the maxima and minima of functions.	PSO1, PSO2, PSO3, PSO6, PSO7		К4								
CO5: Evaluate the solutions of equations using the relationship between the roots and coefficients of the equation. Evaluate the solutions of first order first degree differential equations.	PSO1, PSO2, PSO3, PSO6, PSO7		K5								

	Syllabus:			
Unit	Content	Hours	COs	Bloom's Taxonomy Level
I	Algebra: Sets and functions – Matrices	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3,K 4,K5
II	 Roots of Polynomial: roots – relation between roots and coefficients – Remainder theorem and applications – Newton's Method. Sequences and Series: Arithmetic Progression, Geometric Progression and Sum to n terms, Binomial, Exponential and Logarithmic series. Calculus: Continuous and discontinuous functions – Graph of y = x, x2, x3, ex, log10x, sin x, cos x and tan x – Derivative of the above functions. 	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3,K 4,K5
III	Calculus: Derivative of addition, subtraction, multiplication and quotient of two functions. Geometrical meaning of derivative, maxima and minima. Simple applications in Biology and Physics.	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3,K 4,K5
IV	Integration: Geometrical meaning of integration, Integration of the above functions, Integration of Partial fractions, Definite integration, Integration by parts, areas and volumes involving functions of the above type only.	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3,K 4,K5
V	Differential Equations : First order first degree – Solution of $\frac{dy}{dx} + Py = Q$ where P, Q are functions of x only.	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3,K 4,K5
Refer	ence books for further reading: 1. Applied Mathematics for the managerial, Life and Social So Hill College. 2. Algebra, Vol. I by T.K. Manicavachagom Pillay and others, S Publishers Pvt. Ltd., 1993 3. Calculus Vol. II by S. Narayanan and others, S.Viswanathan 1999. 4. Calculus Vol. III by S. Narayanan and others, S.Viswanathan 1999.	5.Viswanatl Printers &	han Printe Publisher	ers & rs Pvt. Ltd.,

Course	e Articu	lation	Matrix												
Со	Prog	ramme	Outco	mes				Progr	ramme	Specif	ic Out	comes			К
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	PS O 7	Level
CO 1	3	3	2	2	1	-	-	3	3	2	2	1	-	-	1
CO 2	3	3	3	2	1	-	-	3	3	3	2	1	-	-	2
CO 3	3	2	3	2	1	-	-	3	2	3	2	1	-	-	3
CO 4	2	3	3	2	2	-	-	2	3	3	2	2	-	-	4
CO 5	3	3	2	2	-	-	-	3	3	2	2	-	-	-	5
Avg.	2.8	2.8	2.6	2	1	-	-	2.8	2.8	2.6	2	1	-	-	
Avg. for PO			1	.6				Avg . for PS O			1	.6			