DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM (CBCS) Learning Outcome-based Curriculum Framework (LOCF) SYLLABUS

M. Sc Chemistry (2023 – 2024 onwards)

MADRAS CHRISTIAN COLLEGE (AUTONOMOUS) Affiliated to University of Madras Tambaram Chennai – 600 059

July 2023

MADRAS CHRISTIAN COLLEGE

VISION

Madras Christian College aspires to be an Institution of excellence transforming lives through education with a commitment to service.

MISSION

The Madras Christian College (MCC), with the inspiration of the love of God, offers to people of all communities education of the whole person, which is congruous with God's revelation in Christ of the true nature of humanity and is appropriate to the needs of India and of the world.

Graduate Attributes

The Madras Christian College defines the philosophy underpinning its academic programmes and student life experience on campus through the Graduate Attributes (GA), that describe the knowledge, competencies, values and skills students imbibe for holistic development and contribution to society. These attributes encompass characteristics that are transferable beyond the domain of study into the national and international realm fostered through curricular, co-curricular and extra-curricular engagements.

GA 1: Intellectual Competencies

- Graduates of MCC have a comprehensive and incisive understanding of their domain of study as well as the capability for cross-disciplinary learning.
- They have the ability to apply the knowledge acquired through the curriculum as well as selfdirected learning to a broad spectrum ranging from analytical thinking to synthesise new knowledge through research.
- Forming independent individual opinions regarding academic cores and socially relevant issues

GA 2: Professional Ethics

- Graduates of MCC develop ethical and professional behaviour, which will be demonstrated in their chosen careers and constructive citizenship roles.
- They imbibe intellectual integrity and ethics in scholarly engagement and develop a spirit of inclusiveness through interactions with people of special needs and diversity.

GA3: Leadership Qualities

- Graduates of MCC inculcate leadership qualities & attitudes, and team behaviour along democratic lines through curricular, co-curricular and extra-curricular activities
- They develop managerial and entrepreneurial skills to ideate and create new opportunities along with career readiness and capacity to take up various competitive exams.

GA 4: Holistic Skill Development

- Graduates of MCC develop critical thinking, problem-solving, effective communication, emotional and social skills
- They develop digital competency to live, learn and serve in society.

GA 5: Cross-Cultural Competencies

- Graduates of MCC imbibe cross-cultural competencies through engaging with diverse linguistic, ethnic and religious communities providing scope to understand, accept and appreciate individuals at local, national and international levels.
- They develop a global perspective through contemporary curriculum, culture, language and international exchange programmes

GA 6: Service-Oriented Focus

- Graduates of MCC have sensitivity to social concerns and a conviction toward social justice through a commitment to active social engagement.
- They are endowed with a strong sense of environmental awareness through the curriculum and campus eco-system.

GA 7: Value-Based Spiritual Development

- Graduates of MCC are rooted in the principles of ethical responsibility and integrity permeated with Christian values leading to the building of character.
- They develop virtues such as love, courage, unity, brotherhood, industry and uprightness.

Programme Outcomes

Programme Outcomes (POs) of Madras Christian College define the minimum level that students are expected to do, achieve and/or accomplish in order to graduate from a particular programme. These Outcomes are a framework to assess the nature of learning activity experienced within the programme.

Upor	n completion of a Postg	raduate programme, the student will be able to	
PO#	РО	Description of PO	Mapped with GA#
PO1	Domain Knowledge	Develop intensive and extensive knowledge and expertise	GA1,
		in their respective domains	GA3, GA4
		Evaluate and create/construct domain specific knowledge	
		in areas of learning, research and industry	
		Formulate and extrapolate the knowledge gained to apply	
		in real – life situations and competitive examinations	
		Develop an aptitude for self-directed learning for	
		excellence in their chosen area within the domain of study	
PO2	Applicative	Translate theoretical understanding to experimental	GA1,
	knowledge and	knowledge and solve complex problems using	GA3, GA4
	Lateral Thinking	Systems/Design Thinking	
		Apply advanced knowledge and approaches to solve	
		concrete and abstract problems in domain-related and	
		multi-disciplinary issues.	
		Able to solve problems using unconventional and creative	
		approaches	
PO3	Innovation and	Develop aptitude for innovation and entrepreneurship	GA1,
	Research	Identify contemporary research problems, analyze data and	GA4,
		propose solutions	GA5, GA6
PO4	Scientific	Document, prepare and present scientific work as reports	GA1,
	Communication	and research articles in academic forums	GA4,
	skills	Critically assess, review and present theories, principles and	GA5, GA6
		concepts	
PO5	Digital skills	Use of domain-related advanced software resources,	GA1,
		computational skills and digital tools for data analysis,	GA2,
		visualization and interpretation	GA3, GA4
		Ethically apply digital skills to creatively communicate a	
		wide range of ideas and issues related to academic	
		experiences	
PO6	Ethical practices	Apply domain specific ethical principles and practices in	GA2,
		academic, professional and social engagements	GA6, GA7
PO7	Career readiness and	Choose from diverse career options available in local,	GA1,
	higher education	national and international realms.	GA2, GA5
		Carry out further research or pursue higher education in the	
		country or abroad	

POs for Post Graduate Programmes

M. Sc. (Chemistry)

PROGRAM SPECIFIC OUTCOMES (PSO's)*

At the time of graduation they would be able to

PSO #	Statement	Mapped with PO#
PSO 1	Recollect the fundamental concepts of chemistry learnt	PO1
	from undergraduate program and to connect them to	
	perceive advanced concepts.	
PSO 2	Recognize and analyse various structural features and	PO1, PO2
	characteristics of chemical compounds, solids & bio-	
	surfaces.	
PSO 3	Understand the theoretical principles of various physical &	PO2
	chemical processes/reactions and relate them to realistic	
	situations	
PSO 4	Connect the concepts from Physical, Inorganic and	PO2, PO3
	Organic chemistry in solving analytical problems in	
	chemistry.	
PSO 5	Use molecular modeling tools to enhance their	PO5
	understanding of basic concepts in Chemistry (or	
	enhance/widen their chemistry knowledge) and appreciate	
	the principles & applications of cheminformatics.	
PSO 6	Use bench skills and psychomotor skills to translate the	PO2, PO4
	theoretical knowledge to experimental chemistry.	
PSO 7	Apply research methodologies to a given research problem	PO4
	in chemistry to critically review, synthesize information,	
	interpret data, draw conclusions and write scientific report.	
PSO 8	Apply critical & creative thinking, communication &	PO2, PO7
	interpersonal, and problem-solving skills to pursue career	
	in industry, research and academics.	

M.Sc. Course Articulation Matrix Correlation of POs/PSOs to each CO to make

a corresponding mapping table.

Course Outcomes			Progra	am Outo	comes				Program Specific Outcomes							Cognitive Level
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1																K1
CO 2																K2
CO 3																К3
CO 4																K4
CO 5																K5
Wt. Avg.																
Overall Mapping of the Course														PO: PSO:		

Weightage for Correlation								
$0 \leq C \leq 5\%$	No correlation	-						
$5\% < C \le 40\%$	Low / Slight	1						
40% < C < 60%	Moderate	2						
60% ≦C < 100%	Substantial / High	3						

Curriculum Template for M.Sc. Chemistry

SEM	NATURE OF COURSE	COURSE CODE	COURSE TITLE	HOURS /CYCLE	CREDIT	ICA MARKS	ESE MARKS	TOTAL MARKS
	CORE THEORY	CT 1	BASIC CONCEPTS IN ORGANIC CHEMISTRY	5	4	50	50	100
	CORE THEORY	CT 2	STRUCTURAL INORGANIC CHEMISTRY	5	4	50	50	100
	CORE THEORY	CT 3	THERMODYANMICS AND CHEMICAL KINETICS	5	4	50	50	100
	ELECTIVE	E 1	METALS IN LIFE					
Ι	ELECTIVE	Е2	INORGANIC MATERIALS FOR ENERGY	3	5	50	50	100
	ELECTIVE	E 3	INORGANIC ANALYTICAL CHEMISTRY					
	CORE PRACTICAL	CP 1	ORGANIC CHEMISTRY PRACTICAL I	4	-	-	-	-
	CORE PRACTICAL	CP 2	INORGANIC CHEMISTRY PRACTICAL I	4	-	-	-	-
	CORE PRACTICAL	CP 3	PHYSICAL CHEMISTRY PRACTICAL I	4	-	-	-	_
			Total	30	17	200	200	400

Effective from – 2023-24

SEM	NATURE OF COURSE	COURSE CODE	COURSE TITLE	HOURS /CYCLE	CREDIT	ICA MARKS	ESE MARKS	TOTAL MARKS
	CORE THEORY	CT 4	ORGANIC REACTION MECHANISM	4	4	50	50	100
	CORE THEORY	CT 5	COORDINATION AND BIOINORGANIC CHEMSITRY – I	4	4	50	50	100
	CORE THEORY	CT 6	GROUP THEORY AND QUANTUM CHEMISTRY	4	4	50	50	100
	ELECTIVE	E 4	HETEROCYCLIC & POLYMER CHEMISTRY_					
II	ELECTIVE	Е 5	GREEN & ENVIRONMEMNTAL CHEMISTRY	4	5	50	50	100
	ELECTIVE	Е б	NATURAL PRODUCTS & MEDICINAL CHEMISTRY					
	CORE PRACTICAL	CP 4	ORGANIC CHEMISTRY PRACTICAL I	4	4	100	-	100
	CORE PRACTICAL	CP 5	INORGANIC CHEMISTRY PRACTICAL I	4	4	100	-	100
-	CORE PRACTICAL	CP 6	PHYSICAL CHEMISTRY PRACTICAL I	4	4	100	-	100
	-	SS	SOFTSKILLS	2	-	-	-	-
			Total	30	29	500	200	700

SEM	NATURE OF COURSE	COURSE CODE	COURSE TITLE	HOURS /CYCLE	CREDIT	ICA MARKS	ESE MARKS	TOTAL MARKS
	CORE THEORY	CT 7	ORGANIC SPECTROSCOPY AND SYNTHETIC STRATEGIES	4	4	50	50	100
	CORE THEORY	CT 8	COORDINATION AND BIOINORGANIC CHEMSITRY – II	4	4	50	50	100
	ELECTIVE	E 7	BIOPHYSICAL CHEMISTRY					
III	ELECTIVE	E 8	LABORATORY & MANUFACTURING PRACTICES	3	5	50	50	100
	ELECTIVE	E 9	INTRODUCTION TO CHEMINFORMATICS					
	CORE PRACTICAL	CP 7	ORGANIC CHEMISTRY PRACTICAL II	4	-	-	-	-
	CORE PRACTICAL	CP 8	INORGANIC CHEMISTRY PRACTICAL II	4	-	-	-	-
	CORE PRACTICAL	CP 9	PHYSICAL CHEMISTRY PRACTICAL II	4	-	-	-	-
	CORE PROJECT	PROJECT	PROJECT	5	-	-	-	-
	-	SS	SOFTSKILLS	2	8	-	-	-
				30	21	150	150	300

SEM	NATURE OF COURSE	COURSE CODE	COURSE TITLE	HOURS /CYCLE	CREDIT	ICA MARKS	ESE MARKS	TOTAL MARKS
	CORE THEORY	CT 9	ELECTROCHEMISTRY AND SPECTROSCOPY	5	4	50	50	100
	CORE THEORY	CT 10	SCIENTIFIC RESEARCH METHODOLOGY	4	4	50	50	100
	ELECTIVE	E 10	ADVANCED CHEMISTRY	4				
	ELECTIVE	E 11	ENTREPRENEURSHIP FOR CHEMISTS		5	50	50	100
IV	CORE PRACTICAL	CP 10	ORGANIC CHEMISTRY PRACTICAL II	4	2	100	-	100
	CORE PRACTICAL	CP 11	INORGANIC CHEMISTRY PRACTICAL II	4	2	100	-	100
	CORE PRACTICAL	CP 12	PHYSICAL CHEMISTRY PRACTICAL II	4	2	100	-	100
	CORE PROJECT	PROJECT	PROJECT	5	6	50	50	100
				30	25	500	200	700

Curriculum Overview Table								
Part	Credits	Hours						
I Core (Theory + Practical _ Elective)	90	116						
II Internship	2	-						
II Soft Skill	8	4						
Total	100	120						

BASIC CONCEPTS IN ORGANIC CHEMISTRY

Cou	rse Code							
C	credits	4						
Hour	rs / Cycle	5						
Ca	ategory	Part	NA	Core		Theory		
Se	mester	Ι						
Y	ear of	Fron	n the acade	emic year 2023 - 24 onwards				
Imple	mentation							
 To study the concept of aromaticity associated with organic compounds in of molecular orbital theory To activity in the investment of atoms of atoms of atoms in athlitic and any statement of atoms of at						s in the light		
	iectives	2. 1	roanic com	pounds	Schennistry III	stability and	icactivity of	
3. To study the various non-kinetic, kinetic and linear free energy relationshi								
CO#				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)			
On co	mpleting th	ne cou	rse succes	sfully, the student will be able	e to			
CO1	Recall (i) the reactive interview in	he fun ermed hods,	damental p iates (ii) the free energy	rinciples of aromaticity and the e concepts of stereochemistry, relationship and structural effec	e features of kinetic/non- ets.	PSO 1, PSO2	K1	
CO2	Explain (i) the aromatic/non-aromatic/anti-aromatic nature of species PSO3 K2 and the features of reactive intermediates (ii) the concepts of stereochemistry, kinetic/non-kinetic methods, free energy relationship							
CO3	Apply the concepts (i) to distinguish the aromatic/non-aromatic/anti- aromatic compounds/ions, (ii) in the study of reactive intermediates (iii) of stereochemistry and physical organic chemistry.							
CO4	Analyse (i) the stability/reactivity of compounds and ions in line with the PSO 8 K4 concepts of aromaticity, stereochemistry and other physical aspects							
CO5	Evaluate the mechanistic	ne vari c pathy	ous factors vays.	responsible for the stability, r	eactivity and	PSO 8	K5	

	SYLLABUS	SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL										
Ι	 Aromaticity 1.1 Benzenoid and non-benzenoid compounds – Aromatic, non-aromatic, anti-aromatic, super aromatic and homo-aromatic compounds – Hückel's and Craig's rule – Molecular orbital treatment (Example for aromatic, antiaromatic and non-aromatic compounds) – Frost circles – Alternant and non-alternant hydrocarbons 1.2 Study of cyclopropenyl, cyclobutenyl, cyclopentadienyl, cycloheptatrienyl and cyclooctatetraenyl ions 1.3 Annulenes [10], [12], [14], [16], [18], [20] and [22] – Tropolone – Azulene – Fused ring systems (Naphthalene, Anthracene, Phenanthrene) – Heterocyclic compounds (Pyrrole, Pyridine) – Fulvenes and Fullerenes (One example each) 	15	CO1- CO5	K1 – K5										
Π	 Stereochemistry I – Optical isomerism 2.1 Criteria – Chirality, asymmetry, dissymmetry – Optical isomerism due to chiral centre (Acyclic and alicyclic compounds), chiral axis (allenes, biphenyls, spirocompounds) and chiral plane (trans-cyclooctene, Hexahelicene) – Optical isomerism of disubstituted cyclopropane, cyclobutane, cyclopentane and cyclohexane – Optical activity of cis- and transdecalin. 2.2 D & L notations for simple carbohydrates, Erythro-Threo nomenclature – examples. Newmann, Sawhorse, wedged, Fischer projection and their interconversions – Absolute configuration and Relative configuration – R, S Notation of molecules with chiral centre and chiral axis – Identification of homotopic, enantiotopic, diastereotopic atoms and faces – Prochiral carbon atoms 2.3 Asymmetric synthesis: Classification and examples only–Cram's rule. Sharpless epoxidation - dihydroxylation, aminohydroxylation of alkenes – Jacobsen's catalyst. 2.4 Stereospecific and stereoselective reactions – Definition, importance and examples 	15	CO1- CO5	K1 – K5										
III	 Stereochemistry – II Geometrical and Conformational isomerism 3.1. Geometrical isomerism: Cis-trans isomerism and E-Z nomenclature in acyclic systems 3.2. Geometrical isomerism in disubstituted cyclopentane and cyclohexane 	15	CO1- CO5	K1 – K5										

	 3.3. Conformational isomerism: Differences between configuration and conformation, Conformational analysis of ethylene glycol and ethylene chlorohydrin. 3.4. Conformational analysis in cyclic systems – cycloheptane and cyclooctane. Conformational analysis of disubstituted cyclohexanes – Conformational analysis of cis- and transdecalin. 3.5. Dynamics of cyclohexanols (oxidation and acylation), cyclohexanones (reduction) and cyclohexane carboxylic acid derivatives (esterification and hydrolysis) 								
IV	Reaction Mechanism-I (Non-kinetic and kinetic methods)	15 h	CO1- CO5	K1 – K5					
	 4.1 Non-kinetic methods: Energy profile diagrams (for one step and two step reactions) intermediate versus transition state, identification of products, trapping of intermediates, crossover experiments, stereochemical studies- uses of isotopes. 4.2 Kinetic methods: Kinetic isotopic effects, salt effects, solvent effects - solvent isotopic effects, kinetic and thermodynamic controlled products – Hammond's postulates – Curtin-Hammett principle. 								
V	 Reaction Mechanism-II (Structural effects and intermediates) 5.1 Structural effects: Correlation of structure with reactivity Inductive, hyperconjugation, mesomeric, steric effects, steric inhibition of resonance - Acidity of aliphatic and aromatic carboxylic acids and phenols - Basicity of aliphatic and aromatic bases. 5.2 Linear free energy relationship - Hammett equation (Significance of rho, sigma and nonlinear Hammett plot) Taft equation (basic level) 5.3 Organic reaction intermediates: Generation, detection, stability and reactivity of carbocations, carbanions, free radicals, carbenes, arynes and nitrenes. 	15	CO1- CO5	K1 – K5					
Textb	poks								
 Michael B Smith, Jerry March, March's Advanced Organic Chemistry, 7th Edition, Wiley Students Edition, Wiley India Pvt. Ltd., India, 2015 V K Ahluwalia, Rakesh Kumar Parashar, Organic Reaction Mechanism, 4th Edition, Alpha Narosa Publishing House, India, 2019 P S Kalsi, Stereochemistry: Conformation and Mechanism, 10th Edition, New Age International Publisher, India, 2019 									
Refere 1. 2. 3.	 References 1. Ernest L Eliel, Stereochemistry of Carbon Compounds, Tata McGraw Hill Edition, India, 2008 2. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, 2nd Edition, Oxford University Press, India, 2019 3. Francis A Carey and Richard I Sundberg, Advanced Organic Chemistry Part (A & B) 5th 								

Edition, Springer, New York, USA, 2007

4. D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, 4th Edition, New Age International Publishers, India, 2020

Suggested Reading

- 1. N.S. Isaacs, Physical Organic Chemistry, ELBS Publication, Longman, UK, 1987
- 2. S. H. Pine, Organic Chemistry, 5th Edition, McGraw Hill International Edition, USA, 1987
- 3. T. H. Lowry K. S. Richardson, Harper and Row, Mechanism and theory in organic chemistry, 2nd Edition, New York, 1981

Online Resources (accessed on 28 June 2022)

- 1. https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_pg/660
- 2. http://epgp.inflibnet.ac.in/

Course			Pro	gram Ou	tcomes				Program Specific Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level		
CO 1	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K1		
CO 2	-	2	-	-	-	-	-	-	-	3	-	-	-	-	-	K2		
CO 3	-	2	-	-	-	-	-	-	-	-	3	-	-	-	-	K3		
CO 4	-	-	-	-	-	-	2	-	-	-	-	-	-	-	1	K4		
CO 5	-	-	-	-	-	-	2	-	-	-	-	-	-	-	1	K5		
Wt. Avg.	3	2	-	-	-	-	2	3	3	3	3	-	-	-	1			
											Overall M	lapping of th	ne Course	PO: 2.3				

STRUCTURAL INORGANIC CHEMISTRY

Credits 4 Hours / Cycle 5 Category Part NA Core Semester I Year of From the academic year 2023 - 24 onwards Implementation Implementation Course 0bjectives 1. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state che 3. To apprehend the structural information of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Madressed Implementation								
Credits 4 Hours / Cycle 5 Category Part NA Core Theory Semester I Theory Semester I Year of From the academic year 2023 - 24 onwards Inplementation Inplementation Course Objectives 1. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state choired. 3. To apprehend the structural information of crystal systems by means of XRD B Co# Course Outcome(s) PSO Addressed Inplementation On completing the course successfully, the student will be able to District and principles that prove the provide the structure of the provide the provide the structure of the provi								
Hours / Cycle 5 Category Part NA Core Theory Semester I Theory Semester I Year of Implementation From the academic year 2023 - 24 onwards Incomplementation Incomplementation Course Objectives 1. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state choids. Part Course of the structural information of crystal systems by means of XRD Co# Course Outcome(s) PSO Addressed Ta (K On completing the course successfully, the student will be able to District of the part of the structure of the part of the								
Category Part NA Core Theory Semester I								
Semester I Year of Implementation From the academic year 2023 - 24 onwards Course Objectives I. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state cho 3. To apprehend the structural information of crystal systems by means of XRD Co# Course Outcome(s) PSO Addressed Fraction (K On completing the course successfully, the student will be able to Description Description								
Year of Implementation From the academic year 2023 - 24 onwards Course Objectives 1. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state cho 3. To apprehend the structural information of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed F (K On completing the course successfully, the student will be able to								
Implementation I. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state chored 3. To apprehend the structural information of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Objectives Course Outcome(s) Implementation of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Implementation of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Implementation of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Implementation of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Implementation of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Implementation of crystal systems by means of XRD On completing the course successfully, the student will be able to PSO Addressed PSO Addressed								
Course Objectives 1. To determine the structural properties of molecules, main group clusters, rings, 2. To grasp the fundamental concepts and principles that emphasize solid state cho 3. To apprehend the structural information of crystal systems by means of XRD CO# Course Outcome(s) PSO Addressed Ta (K On completing the course successfully, the student will be able to								
CO# Course Outcome(s) F Ta Addressed On completing the course successfully, the student will be able to	nd cages. nistry							
On completing the course successfully, the student will be able to	oom's onomy evels to K5)							
1Recall (i) structural features of main group clusters, rings & cages and ionic crystal systems (ii) principles of solid state chemistryPSO1, PSO2K1								
CO2Explain structural features of main group compounds and principles of solid state chemistryPSO1, PSO2	17.1							

CO3	Apply the electron counting scheme to predict the structural information	PSO2,	К3
	of main group compunds and XRD principles to interpret structural	PSO4	
	features of ionic crystals		
CO4	Analyze the structure of the molecules, ions, main group cluster, rings and	PSO2,	K4
	cages and ionic crystals	PSO4	
CO5	Compare various structural features of main group compounds and ionic	PSO2,	K5
	crystals	PSO3,	
		PSO4	

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Electron counting scheme and structure of main group inorganic compounds	15	CO1- CO5	K1 – K5
	-Steric number or hybridization number and Effect of lone pair on the geometry of molecules (problems only)			
	1.2 Borane cluster: Wade's rule, classification – boranes, carboranes, hetero and metalloboranes; main group clusters –zintl ions and mno rule. (problems only)			
	1.3 Structure and bonding in ring and cage compounds of main group elements: Silicates – types, examples and structures, Silicones and their types, B – N compounds (borazole and boron nitride), Phosphonitrile polymers, polyphosphazenes; Polyacids.			
II	Electron counting scheme and structure of metal clusters Parallels between main group compounds and organometallic compounds: Isolobal analogy; Metal clusters – Definition of metal clusters, Low nuclearity carbonyl clusters –calculation of number of M-M bonds based on 18 electron rule; High nuclearity carbonyl clusters – Poly Skeletal Electron Pair theory (Mingo's rule); Non- carbonyl clusters – metal-metal triple and quadruple bond formation.	15	CO1- CO5	K1 – K5
	Solid state chemistry - I 3.1 Ionic crystals – Packing of ions, packing efficiency and radius ratio rule; Miller indices and Unit cells; Crystal Systems and Bravais lattices; Symmetry Operations in crystals – Proper and improper axis, Mirror planes, Glide planes, Screw axis, Space groups; Symmetry operations in cubic crystal system; Structural features of crystal systems – rock salt, zinc blende & wurtzite, fluorite & anti-fluorite, rutile & anatase and perovskites	15	CO1- CO5	K1 – K5

	3.2 Point Defects – Schottky & Frenkel defects, Metal excess and Metal deficiency defects (Definitions, Explanation and Examples)			
IV	Solid state chemistry - II	15	CO1-	K1 – K5
	4.1 Preparation methods for inorganic solids – Solid state synthesis, combustion synthesis, Low temperature methods – Alkoxide sol-gel method and Solvothermal method; Gas-phase methods – Principles and examples.		CO5	
	4.2 X-ray diffraction technique: Bragg's law, Powder diffraction method – Principle and Instrumentation; Interpretation of XRD data – JCPDS files, Phase purity, Scherrer formula, calculation of lattice constants; Systematic absence of reflections. Single Crystal – Differences between powder and single crystal XRD, Growth by slow evaporation method, instrumentation and sampling technique.			
V	Solid state chemistry – III 5.1 Electron and Neutron Diffraction techniques – Principle and instrumentation 5.2 Electron microscopy – difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM.	15	CO1- CO5	K1 – K5
Prescrib	ed Books/Textbooks			1
1. G L N	feissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Educa	tion Inc., 2	2008	
2. B D C	Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Synth	neses and A	Applicatio	ons, University
Press, 20	113 Phase and C. P. Chatruel. A textback of increasing polymore. Himpleys Pu	hliching II	one Ind	La 2001
J. AKE	Shagi and G K Chatwal, A textbook of inorganic polymers, Himalaya Pu	Edition) Ic	ouse, Inc	11a, 2001 v & Sons I td
2014	vest, solid state chemistry and its applications, 2nd entition (students i	Sumon), je		y & Sons Ltd.,
Referen	ces			
1. R J D	Tilley, Understanding Solids - The Science of Materials, 2nd edition, We	iley Publica	ation, 201	3
2. C N R	Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2	nd Edition	n, Cambri	dge University
Press, 19	997.			
Suggest	ed Reading			
1. L Sma	rt, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRO	C Press, 20)12	
2. Charle	es Kittel, Introduction to Solid State Physics, 8th Edition, John Wiley &	Sons, Inc,	United S	ates, 2005
Web Re	sources (accessed on 28 June 2022)			
1. <u>nttp:/</u> 2. http:/	/epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VoubmrEfubs6rl	xiyTA = =		
3. http://	/epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rl	xiyTA = =		

							M.Sc	. Course A	rticulation	n Matrix						
Course			Prog	ram Out	comes					Pro	gram Spec	ific Outco	omes			Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
CO 1	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	-	2	2	-	-	-	-	-	3	-	3	-	-	-	-	K3
CO 4	-	-	2	-	-	-	-	-	3	-	2	-	-	-	-	K4
CO 5	-	2	-	-	-	-	-	-	3	2	2	-	-	-	-	K5
Wt. Avg.	3	2	2					3	3	2	2.3					
						1				Ov	verall Mapp	oing of the	e Course	PO: 2.3 PSO: 2.6		

THERMODYNAMICS AND CHEMICAL KINETICS

Cours	e Code											
Cre	edits	4										
Hours	/ Cycle	5										
Cate	egory	Par	t NA	Theory	Theory							
Sem	ester	Ι	i									
Yea	ar of	Fro	From the academic year 2023 - 24 onwards									
Implem	entation											
		1.	1. To understand parameters utilized to study the deviation from ideal behaviour.									
Course		2.	2. To grasp the principles behind application of thermodynamics at molecular level.									
Objectiv	ves	3.	3. To appreciate the mechanism of unimolecular, biomolecular and catalytic reactions.									
		4.	To understand	the influence of reaction conditi	ions on the ra	te of various	reactions.					
CO#			PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)								
On completing the course successfully, the student will be able to												
CO1	Recall the	e prin	ciples of therm	odynamics and chemical Kinetic	:S	PSO1	K1					
CO2	Explain t	he fu	ndamentals of	(i) chemical, statistical and non	-equilibrium	PSO2,	K2					
	thermody	nami	cs (ii) reaction	PSO3,								
	reactions	(iv) p	hotochemical,	polymerisation and fast reactions	s & reactions	PSO4						
	caused by	high	energy radiati	on (v) phase diagrams								
CO3	Apply (i)	thern	nodynamic prir	nciples to solutions, three composi-	nent systems	PSO2,	K3					
	and mole	cules	(ii) kinetic prin	ciples to chemical reactions		PSO3,						
						PSO4						
CO4	Analyse (systems (iii)	PSO2,	K4								
	molecular	r prop	perties to predi	ct the behaviour of macroscopic	PSO3,							
	factors in	fluen	cing reaction k	inetics		PSO4						
CO5	Evaluate	(i) th	e parameters	causing deviation from ideal na	ature (ii) the	PSO2,	K5					
	behaviou	r of tl	nree componer	nt systems(iii) application of ther	modynamics	PSO3,						
	at molecu	ılar le	vel (iv) mechai	15	PSO4,							
						PSO8						

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Thermodynamics-I	15	CO1	K1 – K5
	 1.1 Chemical Thermodynamics: Partial molal properties. Fugacity and its determination. Activity and activity coefficient, determination of activity coefficients. 1.2 Three component systems – graphical representation. Solid-liquid equilibria- hydrate formation, compound formation. 1.3 Non-equilibrium Thermodynamics: Postulates of non- equilibrium thermodynamics. Entropy production. Linear laws relative to fluxes and forces. Curie's theorem. Onsager's reciprocity 		CO5	
II	Thermodynamics – II	15	CO1	K1 – K5
	2.1 Statistical Thermodynamics: Permutation and combination. Laws of probability. Distribution laws. Gaussian distribution. Microstates and macrostates for		-	
	 distinguishable and indistinguishable particles. Thermodynamic probability. Maxwell Boltzmann distribution for molecular velocities. Maxwell-Boltzmann statistics -Partition functions-Translational, rotational, vibrational and electronic partition function – Calculation of thermodynamic parameters and equilibrium constants in terms of partition function - Bose-Einstein and Fermi- Dirac statistics 2.2 Heat capacities of monoatomic gases and solids- Einstein and Debye Models. Classical limit. Liquid helium and BE condensation. Fermi energy. Negative absolute temperature. 			
III	Chemical Kinetics – I	15	CO1	K1 – K5
	 3.1. Reaction Mechanisms. CTST Potential energy surfaces, reaction coordinate. Kinetic isotope effect. Principle of microscopic reversibility-detailed balancing. Unimolecular – Lindemann, Hinshelwood, Rice–Ramsperger–Kassel (RRK), Slater and Rice Ramsperger–Kassel–Marcus (RRKM) theory. and Termolecular reactions. 3.2. Reactions in Solution. Comparison of gas phase reactions with reactions in solutions, factors influencing reaction rates in solution effect of dielectric constants primary and secondary salt effects. Application of CTST to reactions in solution, diffusion controlled reactions in solutions (cage effect). 		- CO5	

IV	Chemical Kinetics – II (15 hours)	15	CO1	K1 – K5
	 1.1 Homogeneous Catalysis. Bronsted Acid-Base Catalysis: Specific Catalysis & General Catalysis (kinetic expression and kinetic plots) - Bronsted Catalysis Law, acidity functions, Zucker-Hammett and Bunnet hypothesis. Enzyme catalysis – Michealis Meten equation, Lineweaver- Burk plot, Eadie plot. Effect of temperature and pH on enzyme catalyzed reactions 1.2 Heterogeneous Catalysis. Physical adsorption and chemisorption – Lennard-Jones plots- Adsorption isotherms -Langmuir and BET equation - Surface area measurement Role of surface in catalysis-Langmuir- 		CO5	
	Hinshelwood, and Rideal-Eley mechanisms. Semiconductor Catalysis			
V	Chemical Kinetics – III (15 hours)		CO1	K1 – K5
	5.1 Kinetics of Photochemical Reactions: Comparative study of thermal and photochemical mechanisms in hydrogen- halogen reactions. Decomposition of carbonyl		-	
	 compounds Rice- Herzfeld mechanisms. 5.2 Kinetics of Polymerisation Reactions: Principle of polymerisation kinetics-molecular and free radical mechanisms 		CO5	
	 5.3 Fast reactions: Methods of studying fast reactions-flow methods – relaxation technique- flash photolysis. 5.4 Radiation Chemistry: Source-Interaction of high energy radiation with matter -primary and secondary processes-G-value- Radiolysis of water and aqueous solutions Dosimetry 			
Textbo	poks			
1. 2. 3. 4. 5. 6.	S. Glasstone, Thermodynamics for Chemists, 1st Edition, East W B J McClelland, Statistical thermodynamics, Chapman and Hall, L Leonard K Nash, Elements of statistical thermodynamics, 2nd Ec K J Laidler, Chemical Kinetics, 3rd edition, Pearson, 2003. Eric V Anslyn, Dennis A Dougherty, Modern Physical Organi Books, 2005 C Kalidas, M V Sangaranarayanan, Non-Equilibrium Thermodyn Macmillan India Ltd., 2002.	est Press, 2 ondon, 19 lition, Dov c Chemist amics: Prin	2008. 73. rer Publi ry, Univ nciples &	cations2012. versity Science &Applications,
Refere	nces			
1. JF	F Lee, F.W. Sears, D.L. Turcottee, Statistical Thermodynamics, 2nd	l Edition, 1	.973.	
2. M. 3. R. 19	P. Rastogi, R.R. Misra, An Introduction to Chemical Thermody. 96	namics, Vi	kas pub	lishing house,
4. J. I	Rajaram, J. C. Kuriakose, Thermodynamics, Pearson, 2013.			
5. P.	W. Atkins, Physical Chemistry, Oxford University Press, 8th Edition	on, 2006		
1. M.	sted Keading W. Zemansky, R.H. Dittman. Heat and Thermodynamics. Tata Mo	cGraw Hill	, 1981.	
			,	

- 2. M. F. Granville, Student Misconceptions in Thermodynamics, J. Chem. Edu. 62 (1985) 847.
- 3. L. S. Bartell, Stories to Make Thermodynamics and Related Subjects More Palatable, J. Chem. Edu. 78 (2001) 1059.
- 4. D. N. Hague, Fast Reactions, Wiley- Interscience, New York, 1971.
- 5. J. W. Moore and R. G. Pearson, Kinetics and Mechanisms, John Wiley & Sons, New York, 1981.
- 6. M. R. J. Dack, The Influence of Solvents on Chemical Reactivity, J. Chem. Educ. 51 (1974) 231

Online Resources (accessed on 28 June 2022)

1. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==

2. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==

3. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==

							M.Sc. (Course Art	iculation N	Matrix						
Course			Progra	am Outc	omes					Pro	gram Spec	ific Outco	omes			Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
						6										
CO 1	3	3	2	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	3	3	2	-	-	-	-	-	3	3	2	-	-	-	-	K2
CO 3	3	3	2	-	-	-	-	-	3	3	2	-	-	-	-	K3
CO 4	3	3	2	-	-	-	-	-	3	3	2	-	-	-	-	K4
CO 5	3	3	2	-	-	-	-	-	3	3	2	-	-	-	1	K5
Wt. Avg.	3	3	2	-	-	-	-	3	3	3	2	-	-	-	1	
										Ov	verall Mapp	oing of the	e Course	PO -2.6		
												-		PSO = 2	1	

METALS IN LIFE

Course Co	ode										
Credits	3	5									
Hours / C	ycle	3	3								
Categor	y.	Part	NA	Elective		Theory					
Semeste	er	Ι	I								
Year of		From	he acad	emic year 2023 - 24 onwards							
Implement	ation		5								
Course Obje	ectives	1. To c 2. To r 3. To g 4. To a	ompreher ecognize rasp the v ppreciate	nd the coexistence of metals in h the emerging problems caused by various analytical techniques to de the practicality of metals in the f	uman y metal etect m field of	man life and environment metal pollution ect metal in air and water eld of medicine, industry and ar					
CO#			Course Outcome(s) Bloom's PSO Taxonom Addressed Levels (K1 to K2)								
On completin	On completing the course successfully, the student will be able to										
CO1	Underst biologic industry	and role al proces , Art and	of the ses and ca civilizatio	s in icine,	PSO 1, PSO3	K1					
CO2	Identify of envi techniq	y the tox ronmen jues to si	ticity of v t (Air, Wa ustain clea	various metals on different segm ter, soil) and explore the remedia an and safe environment	nents ation	PSO3	K2				

CO3	Familiar with standard air, water and soil quality parameters and correlate metals excess and deficiency with human diseases.	PSO4, PSO 7	K3
CO4	Equipped and familiar with various analytical techniques used for air, water, and soil analysis and select appropriate one for the specific requirement	PSO4, PSO 7	K4
CO5	Innovate new ideas for the use of metals in developing new medicines, and pave the way to protect the environment by finding alternate of hazardous substances	PSO6, PSO 8	K5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 Metals in life's existence 1.1 Essential and non-essential metals – Role of Na, K, Ca, Mg, Zn, Co, Fe, Cr, Mo and CuSource- dietary requirement, biological importance and diseases caused by deficiency/excess; Sodium-potassium ion pump 1.2 Structure and functions of Metalloenzymes: Iron containing enzymes such as methane monoxygenase, nitric oxide reductase; Molybdenum containing enzymes such as xanthane, sulphite oxidase and nitrate 	9	CO1- CO5	K1 – K5
II	 Metals in Environment 2.1 Heavy metals and toxicity –Toxicology: Definition and scope, acute and chronic toxicity, selective toxicity, toxicology and biological effects of arsenic, cadmium, chromium, mercury and nickel, Bio-accumulation and bio-magnification, Remediation technologies– Basic principles of phytobioremediation of heavy metals from soil. 2.2 Radiation toxicology: Sources –Radiation from natural and manmade activities; Terminologies: radionuclides, radiation emissions and radioactive decay; Ionizing and nonionizing radiation; Effects of radioactive toxicology of Cesium-137, Krypton-85 Iodine-131 and Strontium-90; Biological and environmental effects–storage and disposal of radioactive wastes; Detection and monitoring of radioactive pollutants 2.3 Metals in E-waste–Definition and types, E-waste management 	9	CO1- CO5	K1 – K5
III	 Metals in water and air 3.1 Water quality parameters, Hardness– cause of temporary and permanent hardness, analysis of hardness; Metallic pollutants in water and trace metal analysis –cause of metal pollution in water, analysis of arsenic by Atomic absorption spectroscopy 	9	CO1- CO5	K1 – K5

	 (AAS), cadmium and mercury by dithizone method, chromium by diphenyl carbazide method, lead by polarographic method. 3.2 Air sampling and monitoring techniques: settle-able and suspended particulate matter; monitoring of air quality by dust fall jar and impingement method 										
IV	 Metals in Medicines 4.1 Metal-dependent diseases: Deficiency diseases of Zn, Hg, Cd, Pb and Cu 4.2 Metals in therapy: Metals in radiodiagnosis and Chemotherapy; Metal based drugs - Li, Pt, Rh, Ru and Au; Detoxification by chelation therapy 	9	CO1- CO5	K1 – K5							
	4.3 Bio-compatible metals and their applications – Ti, Ca and alloys										
V	 Metals in Industry, Civilization and Art 5.1 Role of metals in paints, oil and gas industry, pharmaceutical industry, battery industry, fireworks industry and in soldering 5.2 Role of metals in jewelry – Role of Cu, Al, Au, Nb, Pd, Pt, 	9	CO1- CO5	K1 – K5							
	 Ag, Ti, brass, Pewter and stainless steel–unique chemical and physical properties 5.3 Role of metals in civilization, culture and art–Three major periods of metal age (copper, bronze and iron age), traditional Indian iron making technology, Rust-less wonders – OutubMinar and iron pillar of Delbi 										
Textboo 1. 2. 3. 4. 5.	Asim K. Das, Bioinorganic Chemistry, Books & Allied Ltd., 2007 K Hussain Reddy, Bioinorganic Chemistry, New Age International, 20 A K De, Environmental Chemistry, 5th Edition,New Age Internation P S Sindhu, Environmental Chemistry, New Age International, 2002 Sharada Srinivasan, SrinivasaRanganathan, Alessandra Giumlia-Mair, I Institute of Advanced Studies, Bengaluru, 2015	007 nal, 2003 Metals and	Civiliza	tions, National							
Referen 1. 0 2. 3 3. 1 4. 1	 eferences 1. G J Hussain, Elements of Environmental Chemistry, Anmol Publications Pvt. Ltd., 2011 2. S SPurohit and B Kakrani, Air Environment and Pollution, Agrobios (India), 2018 3. M Noor, Environment and Water Pollution (Cause, Effect and Control), Cyber Tech Publications, 2012 4. M A Subramanian, Toxicology: Principles and Methods, 2nd revised Edition, MJPPublishers, 2010 										
Suggest 1. 2. 3. Online	 M A Subramanian, Toxicology: Principles and Methods, 2nd revised Edition, MJPPublishers, 2010 Suggested Reading Cassius M. Riley, Toxicology: The Nature, Effects and Detection of Poisons, with the Diagnosis and Treatment of Poisoning, Andesite Press, 2017 Q A Acton, Issues in Radiation Biology and Toxicology Research, Scholarly Editions, 2013 C S Smith, Materials and the Development of Civilization and Science, Science (1965) 148, 908-917 Online Resources (accessed on 28 June 2022) 										
1.]	https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8Vouh	nmrFfuhs6	rkiyTA=	=							

	M.Sc. Course Articulation Matrix															
Course			Prog	gram Ou	itcomes				Program Specific Outcomes							Cognitive
Outcomes	PO	PO	PO	PO	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
	1	2	3	4												
CO 1	3	3	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	-	3	-	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	-	-	3	-	-	-	-	K3
CO 4	-	3	-	-	-	-	-	-	-	-	3	-	-	-	-	K4
CO 5	-	-	-	-	-	-	3	-	-	-	-	-	3	3	-	K5
Wt. Avg.	3	3					3	3	3	3	3		3	3		
Overall Mapping of the Course PO: 3																
PSO: 3																

INORGANIC MATERIALS FOR ENERGY

Cours	e Code												
Credit	ts	5											
Hours	s / Cycle	3											
Categ	ory	Part	NA	Elective		Theory							
Semes	ster	Ι				• • •							
Year of	of	From	From the academic year 2023 - 24 onwards										
Imple	mentation												
Cours	e Objectives	 To recognize the properties and importance of inorganic materials in energy To appreciate the fundamental concepts and principles underlying energy storage and conversion devices To approve the significance of CO, approximate to beneficial products 											
CO#				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)								
On co	mpleting the co	ourse	successf	ully, the stud	ent will be able t	0							
CO1	Recall (i) optica (ii) basics and g reduction, oper	il, cono govern ration o	ducting a ing princ of batterio	nd magnetic p ciples of electres, fuel cells ar	roperties of inorg ochemical water ad super capacitor	anic materials splitting, CO ₂ s	PSO1, PSO2	K1					
CO2	Comprehend (materials and m splitting, CO ₂ r	i) optio lechani eductio	cal, cond isms invo on, batter	ucting and m lved in the op- ies, fuel cells a	agnetic properties eration of electroc and super capacito	of inorganic hemical water ors	PSO1, PSO2	K2					
CO3	Apply the know properties of in energy storage	vledge Iorgani and co	the inter c materia nversion	pret (i) the op ils (ii) selection devices	n of anode cathod	and magnetic e materials of	PSO2, PSO4	K3					
CO4	Analyse the (i) factors affecting the optical, conducting, and magnetic PSO2, K4 properties of inorganic materials (ii) performance of the energy storage and PSO4 PSO4							K4					
CO5	Compare optica (ii) performance	al, cone e of th	ducting, a e energy	and magnetic p storage and co	properties of inorg proversion material	anic materials s.	PSO2, PSO3, PSO4	K5					

	SYLLABUS													
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL										
Ι	Opto-electronic materials	9	CO1	K1 – K5										
	1.1 Colour centres (F, F', V and H) – Definition and examples;		-											
	Photophysical processes – Jablonski diagram, chemiluminescence;		CO5											
	1.2 Photo-luminescent inorganic materials - presence of defects and													
	dopants; Lasers – ruby laser, neodymium laser and inorganic LEDs.													
II	Solid electrolytes	9	CO1	K1 – K5										
	2.1 General Characteristics of solid electrolytes; Ionic Conductors		-											
	- Factors affecting ionic conductors, types of ionic conductors		CO5											
	- alkali halide ion conductors, alumina, silver and copper ion													
	conductors; Proton ion conductors;													
	2.2 Super conductors – Types, BCS theory, Meissner effect and													
	applications of super conductors.													
III	Magnetic Materials	9	CO1	K1 – K5										
	3.1. Terminologies: Atomic Magnetism, magnetic domains,		-											
	magnetization and magnetic saturation, hysteresis loop; Types		CO5											
	of Magnetic Materials-soft and hard magnetic materials,													
	spinels and garnets;													
	3.2. Applications of magnetic materials in/as permanent magnets,													
	transformer core, magnetic information storage;													
137	Magnetoresistance materials and their applications	0	<u>CO1</u>	V1 VE										
1 V	Materials for electrochemical energy storage	9	COI	KI - KJ										
	4.1 Batteries – Prinary and secondary batteries, operational		-											
	Lithium ion batteries		005											
	4.2 Supercapacitors Types and operational characteristics: Anode													
	and cathode materials-Types and basic mechanisms													
V	Materials for electrochemical energy conversion	9	CO1	K1 – K5										
	5.1 Electrochemical water splitting: Principle, Electrocatalyts for	-	-											
	hydrogen production: Electrocatalysts for oxygen evolution –		CO5											
	Transition metal based electrocatalysts (Ni, Co, Fe),													
	perovskites oxides and transition metal chalcogenides.													
	5.2 Fuel cells: Principle, Transition metal catalysts-binary and													
	ternary metal catalysts.													
	5.3 CO ₂ reduction: Carbon cycle, greenhouse effect, Challenges in													
	the selection of catalysts, Noble and Non-noble metal catalysts.													
Textbo	ooks													
1.	A. R West, Solid State Chemistry and its Applications 2 nd Edition (Stud	lent Editio	n), John	Wiley & Sons										
	Ltd., 2014.													
2	I Smart E Moore Solid State Chamistry An Introduction 1th Edit	ion CRC	Dross 21	D1 D										

- 2. L. Smart, E. Moore, Solid State Chemistry An Introduction, 4th Edition, CRC Press, 2012.
- 3. M. Aulice Scibioh and B. Viswanathan, Materials for Supercapacitor Applications, Elsevier Publications, 2020
- 4. B. Viswanathan and M. Aulice Scibioh, Photoelectrochemistry– Principles and Practices, Alpha Science International Ltd., 2014

References

1. M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245-4269.

Suggested Reading

1. M. Aulice Scibioh & B. Viswanathan, Electrocatalytic reduction of carbon dioxide: A status report, Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004, 407-462

Online Resources (accessed on 28 June 2022)

1. https://www.sciencedirect.com/science/article/pii/S223878541500112X

	M.Sc. Course Articulation Matrix															
Course			Prog	ram Out	comes					Pro	ogram Spe	cific Outc	omes			Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
CO 1	3	3	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	3	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	-	3	2	-	-	-	-	-	3	-	3	-	-	-	-	K3
CO 4	-	1	2	-	-	-	-	-	3	-	2	-	-	-	-	K4
CO 5	-	3	2	-	-	-	-	-	3	1	2	-	-	-	-	K5
Wt. Avg.	3	2.6	2					3	3	1	2.3					
Overall Mapping of the Course PO:2.5																
														PSO: 2.3		

INORGANIC ANALYTICAL CHEMISTRY

Cour	se Code											
Cı	redits	5										
Hour	s / Cycle	3										
Ca	tegory	Part	NA	Elective		Theory						
Ser	mester	Ι	Ι									
Y	ear of	From the academic year 2023 - 24 onwards										
Impler	mentation											
Course	Objectives	1. To fo 2. To 3. To	 To recognize the fundamentals and theoretical principles of analytical tools used for qualitative and quantitative analysis To grasp the fundamentals and instrumentation of analytical tools To identify the analytical techniques and significance of radiometric analysis 									
CO#				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)							
On com	pleting the o	course s	successfu	lly, the student will be able to								
CO1	Recall the fundamental principles of various analytical techniques and spectroscopic techniques like atomic absorption and emissionPSO1, PSO2spectroscopy & photo electron spectroscopyPSO2											
CO2	Explain the principles, instrumentation and applications of variousPSO1,K2analytical techniques and spectroscopic techniques like atomic absorptionPSO2PSO2and emission spectroscopy & photo electron spectroscopy											

CO3	Apply the principles of various analytical techniques and spectroscopic	PSO2,	К3
	techniques like atomic absorption and emission spectroscopy & photo	PSO4	
	electron spectroscopy in qualitative and quantitative analysis of inorganic		
	elements / ions / compounds		
CO4	Analyse and compare the principles of analytical techniques involved in	PSO2,	K4
	analysis of inorganic elements / ions / compounds	PSO4	
CO5	Compare and evaluate the analytical techniques to be used for analysis of	PSO2,	K5
	inorganic elements / ions / compounds	PSO3,	
		PSO4	

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
T	Atomic Spectroscopy	9	CO1-	K1 - K5
1	1.1. Atomic Absorption Spectroscopy (AAS): Principles of AAS.		CO5	111 110
	Instrumentation – flame AAS and furnace AAS, resonance line			
	sources, sensitivity and detection limits in AAS, interferences –			
	chemical and spectral, evaluation methods in AAS;			
	Applications in qualitative and quantitative analysis.			
	1.2. Atomic Emission Spectroscopy (AES): Principle of AES,			
	Instrumentation, Interferences, evaluation methods,			
	Applications in quantitative analysis			
II	Electroanalytical methods	9	CO1-	K1 – K5
	2.1 Polarography: Principle, Ilkovic's equation, Dropping Mercury		CO5	
	Electrode (DME), Rotating Disc electrode, role of supporting			
	electrolyte, factors affecting polarographic wave and			
	applications in qualitative and quantitative analysis			
	2.2 Cyclic Voltammetry: Principle of cyclic voltammetry,			
	conditions for reversibility of electrochemical reactions, quasi-			
	reversible and irreversible processes, cyclic voltammogram of			
	$K_3[Fe(CN)_6]$; applications in inorganic analysis			
	2.3 Amperometric titrations: Difference between polarography			
	and amperometric titration; dead stop end point metrica (bi			
	(i) mixture of balides (ii) Eq(II) as Eq(III) and (iii) Ti(IV) as			
	- (i) mixture of mandes, (ii) $\operatorname{Pe}(\Pi)$ vs $\operatorname{Pe}(\Pi)$ and (iii) $\Pi(\Pi V)$ vs $\operatorname{T}_{i}^{*}(\Pi I)$			
III	Thermoanalytical methods	9	CO1-	K1 – K5
	3.1. Thermogravimetric analysis (TGA): Principle. Factors		CO5	111 110
	affecting thermograms. Derivative thermogravimetric curves.			
	Instrumentation – Honda's balance; applications of			
	thermogravimetry – calcium oxalate monohydrate and			
	dolomite ore			
	3.2. Differential Thermal Analysis (DTA): Principle,			
	Instrumentation, DTA curves for calcium oxalate			

	monohydrate, phase transition of sulphur and manganese			
	phosphinate			
	3.3. Differential Scanning Calorimetry (DSC): Principle,			
	Instrumentation, DSC analysis for carbon tetrachloride			
IV	Radiochemical methods	9	CO1-	K1 – K5
	4.1. Hot atom chemistry, The Szilard-Chalmers process, chemistry		CO5	
	of recoil atoms, chemical effects of radioactive decay, solvated			
	electron.			
	4.2. Uses of radiations in the study of matter, neutron activation			
	analysis, dilution analysis, dosimetry, synthesis of organic and			
	inorganic compounds by irradiation radiometric analysis,			
	radiography.			
V	Photo electron spectroscopic techniques	9	CO1-	K1 – K5
	5.1 X-ray photoelectron spectroscopy (XPS), Ultra-violet		CO5	
	photoelectron spectroscopy (UPS), Auger electron spectroscopy			
	(AES), Principles of XPS and AES, Chemical shift, Depth profiling,			
	5.2 Instrumentation, Applications of XPS and AES			
Textb	ooks		•	
1.	Hobart H. Willard, John A. Dean, Lynne L. Merritt, Instrumental meth	nods of ana	lysis, D.	VanNostrand
	Co., 1953		<i>.</i>	
2.	Gary D. Christian, Analytical Chemistry, 6th Edition, Wiley India Pvt	. Ltd., 2007	7	
Refere	ences			
1.	D A Skoog, Principles of Instrumental Analysis, 6th Edition, Cengage	e Learning,	2016	
2.	J H Kennedy, Analytical Chemistry: Principles, 2nd Edition, Cengage	Learning (India	
	edition), 2011			
Sugge	sted Reading			
1.	S M Khopkar, Basic Concepts of Analytical Chemistry, 4th Edition, N	New Age Ir	nternation	nal
	Publishers, 2020			
Online	e Resources (accessed on 28 June 2022)			
1.	https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=1+p0z2ZbA	<u>GSfsyfLI'I</u>	zgZQ==	<u>=</u>
2.	https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=1+p0z2ZbA	GSfsyfLI'I	zgZQ==	=

							Ν	A.Sc. Course	e Articulatio	n Matrix						
Course			Pro	gram Ou	tcomes				Program Specific Outcomes							Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	0
CO 1	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	-	2	2	-	-	-	-	-	3	2	2	-	-	-	-	K3
CO 4	-	-	2	-	-	-	-	-	3	-	2	-	-	-	-	K4
CO 5	-	2	-	-	-	-	-	-	3	2	2	-	-	-	-	K5
Wt. Avg.	3	2	2	-	-	-	-	3	3	2	2					
	Overall Mapping of the Course PO: 2.3															
	PSO: 2.5															

ORGANIC CHEMISTRY PRACTICAL – I

Cours	e Code										
Credit	ts	4									
Hours	s / Cycle	4									
Categ	ory	Part III	Core	Practical							
Semes	ster	Ι									
Year	of	From the ac	ademic year 2	023 - 24 onwards							
Imple	mentation										
Course Objectives 1. To achieve the separation of organic mixtures with two and three companies and identify each component through systematic qualitative analysis 2. To develop bench and psychomotor skills in organic preparations involv and three stages											
CO#	# Course Outcome(s) PSO Addressed Bloom's Taxonomy Levels (K1 to K5)										
On co	ompleting the o	course succes	sfully, the stu	dent will be able to							
CO1	Recall and tabulate the experimental procedure for the separation and identification of organic compounds.PSO1K1										
CO2	Compile the r	eport of the ex	periments in ar	n organized way.	PSO1	K2					
CO3	Tabulate/pres related to qual	ent the exper litative organic	imental observ analysis and in	vations in a systematic manne the organic synthesis.	r PSO1, PSO6	K3					
CO4	Tabulate the in to qualitative classes	nferences and p organic analys	present the repo is and in the	ort in a systematic manner related organic synthesis during regula	l PSO1, - PSO6	K4					
CO5	Tabulate the in qualitative org	nferences and pranic analysis ar	present the rep and in the organ	ort in a systematic manner of the ic synthesis during ICA.	e PSO1, PSO6	K5					
CON	TENT										
I.	Separation a	nd analysis of	two compone	ent organic mixture by chemic	al methods						
п.	 Separation and analysis of <i>two component</i> organic mixture by chemical methods Separation and analysis of <i>three component</i> organic mixture by chemical methods (Benzoic acid, Cinnamic acid, Phthalic acid, α and β-Naphthol, Aniline, N, N-Dimethylaniline, Glucose, Sucrose, Fructose, Benzaldehyde, Acetophenone, Benzophenone, Nitrobenzene, Benzamide, Acetanilide, Urea) 										
III.	 III. Two Stage Organic Synthesis (Any Five) Synthesis of organic compounds based on the following types of reactions: Acetylation, Bromination, Oxidation, Reduction, Dehydration, Cyclization, Benzoylation, Hydrolysis, Condensation and Esterification 1. p-Bromoacetanilide from Aniline (Acetylation, Bromination) 2. p-Aminobenzoic acid from p-Nitrotoluene (Oxidation, Reduction) 3. Benzil from Benzaldehyde (Condensation, Oxidation) 										

- 4. 1,2,3,4-tetrahydrocarbazole from Cyclohexanone (Condensation, Cyclization)
- 5. Phthalimide from Phthalic acid (Dehydration, Substitution)
- 6. 4-Methyl-7-acetoxy coumarin from Resorcinol (Cyclization, Acetylation)
- 7. Acetyl salicyclic acid from Methyl salicylate (Hydrolysis, Esterification)
- 8. Stilbene from Benzaldehyde (Condensation, Reduction)

IV. Three Stage Organic Synthesis: (Any Three)

- 1. p-Bromoaniline from Aniline (Acetylation, Bromination, Hydrolysis)
- 2. Ethyl p-aminobenzoate from p-Nitrotoluene (Oxidation, Reduction, Esterification
- 3. Benzilic acid from Benzaldehyde (Condensation, Oxidation, Rearrangement)
- 4. Anthranilic acid from Phthalic acid (Dehydration, Substitution, Hydrolysis)
- 5. 5. Stilbene dibromide from Phthalic acid Benzaldehyde (Condensation, Reduction, Addition)

Textbooks

- N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry Lab manual, S. Viswanathan Co. Pvt. Ltd, 1998.
- 2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 1987
- 3. Monograph on Green Chemistry Laboratory Experiments, Green Chemistry Task Force Committee, Department of Science & Technology, GoI, 2009

References

- 1. Vogel's Text Book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England, 1984.
- 2. V K Ahluwalia, Sunitha Dhingra, Adarsh Gulati, College Practical Chemistry, University Press, India, 2008.
- 3. Jag Mohan, Organic Analytical Chemistry, Narosa Publishing House, India, 2003

	M.Sc. Course Articulation Matrix															
Course			Prog	ram Outo	comes					Pr	ogram Spe	ecific Outo	comes		Cognitive	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
CO 1	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	K1
CO 2	-	-	-	2	-	-	-	2	-	-	-	-	-	-	-	K2
CO 3	-	2	-	2	-	-	-	2	-	-	-	-	3	-	-	K3
CO 4	-	2	-	2	-	-	-	2	-	-	-	-	3	-	-	K4
CO 5	-	2	-	2	-	-	-	2	-	-	-	-	3	-	-	K5
Wt. Avg.	-	2	-	2	-	-	-	2	-	-	-	-	3	-	-	
-Overall Mapping of the Course PO: 2.0																
PSO: 2.5																

INORGANIC CHEMISTRY PRACTICAL I

Cours	e Code									
Credit	ts	4								
Hours	s / Cycle	4								
Categ	ory	Part III	Core	Practical						
Semes	ster	Ι								
Year o	of	From the aca	demic year 2023 - 24 onward	ls						
Imple	mentation									
Cours	e	concepts in ide	entifying the	metal ions						
Objec	tives									
CO#				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On co	On completing the course successfully, the student will be able to									
CO1	Recall (i) th familiar and colorimetric for the prepa	e semimicro q l less familiar estimation of n aration of vario	ualitative analysis techniques cations in the given mixt netal ions(Fe, Cu, Ni and Mn) us metal complexes/compound	to identify the ure (ii) Photo (iii) procedure ds	PSO1, PSO2	K1				
CO2	Comprehend analysis, ph chemical rea	the principles otocolorimetric ctions involved	s and concepts behind semim e estimation of metal ions a in the preparation of complex	icro qualitative ind process & es.	PSO2. PSO3	K2				
CO3	Apply (i) the principles and concepts behind semimicro qualitative analysis PSO4, for identifying the familiar & less familiar cations (ii) quantitative PSO6 estimation of metal ions by photo colorimetric method (iii) the knowledge									
CO4	 Analyse (i) to identify and separate the cations from the given mixture (ii) PSO6 K4 the results of the photocolrimetric estimation of metal ions and interpret the data (iii) the mechanism involved and purity of the compound 									
CO5	Evaluate the accuracy of the semimicro qualitative analysis results for mixture containing familiar and less familiar cations.(ii) comparison of colorimetric estimation of metal ionsPSO6, PSO7K5									

CONTENT

- I. Semimicro qualitative analysis of mixtures containing two common cations and two cations of the following less familiar elements.
 - Tl, W, Se, Te, Mo, Ce, Th, Ti, Zr, V, Be and U and Li
- II. Photo-colorimetric estimation of metal ions:
 - 1. Colorimetric Estimation of Iron by Fe-NH4SCN complex
 - **2.** Colorimetric Estimation of Copper by Cu-NH3 complex
 - **3.** Colorimetric Estimation of Nickel by Ni-DMG complex
 - 4. Colorimetric Estimation of Manganese

III. Complex preparations (any FIVE):

- 1. Preparation of Tetramminecopper(II) sulphate.
- 2. Preparation of Tris(thiourea)copper(I) sulphate
- 3. Preparation of Potassium tris(oxalato)chromate (III)
- 4. Preparation of Sodium hexanitrocobaltate(III)
- 5. Preparation of Potassium bis(oxalato)cuprate(II) dihydrate
- 6. Preparation of Sulphatotris(thiourea)zinc(II)
- 7. Preparation of Hexamminenickel(II) Chloride
- 8. Preparation of cis-Potassium dioxalatodiaqua chromate(III)
- 9. Preparation of soidum trioxalato ferrate(III)

IV. Green synthesis:

Preparation of manganese dioxide nano-particles, Preparation of iron oxide nanoparticles

Textbooks

- 1. Semimicro qualitative analysis of inorganic ions by V. V. Ramanujam
- 2. Vogel's textbook of Macro and Semimicro qualitative analysis, 5th Edition, Revised by G. Svehla, Longman GroupLimited, London, 1979

References

1. Experimental Inorganic Chemistry, W.G. Palmer, Cambridge University Press, Cambridge, 1965

Online Resources (accessed on 28 June 2022)

- 1. https://www.frontiersin.org/articles/10.3389/fnano.2021.655062/full
- 2. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0408-4

M.Sc. Course Articulation Matrix																
Course			Pro	ogram O	atcomes					Pro	gram Spee	cific Outco	omes			Cognitive
Outcomes																Level
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	2		-	-	-	-	-	3	-	-	-	-	3	-	-	K1
CO 2	-	3	-	-	-	-	-	3	3	-	-	-	3	-	-	K2
CO 3	2	3	-	-	-	-	-	-	-	3	3	-	3	-	-	K3
CO 4	2	3	-	-	-	-	-	-	-	-	-	-	3	1	-	K4
CO 5	2	3	-	-	2	-	-	-	-	-	-	-	3	1	-	K5
Wt. Avg.	t. Avg. 2 3 2 3 3 3 3 3 1															
Overall Mapping of the Course PO: 2.3																
PSO: 2.7																

PHYSICAL CHEMISTRY PRACTICAL I

Course C	Code									
Credits		4								
Hours /	Cycle	4								
Category	τ	Part III	Core	Practical						
Semester	•	Ι								
Year	of									
Impleme	entatio									
n										
Course	20	To apply the	theoretical concepts of physical parameters	sical chemistr	ry in deter	mining and				
Objective	es	understanding va	arious physical parameters			Bloom's				
CO#		(PSO Addressed	Taxonomy Levels (K1 to K5)					
On comp	On completing the course successfully, the student will be able to									
CO1	Recall experin	the basic physic nents and tabulate	al chemistry concepts throug the results of the experiments	h hands-on	PSO 1	K1				
CO2	Compi	le the results of th	e experiment in a organised man	nner	PSO7	К2				
CO3	Calculate various physical quantities using the principle of electrochemistry, thermodynamics, spectroscopy and phase rule.PSO6									
CO4	Present	the report of the	PSO4, PSO 6	K4						
CO5	(i) Dev collabos (ii) Tab	PSO4, PSO6, PSO7, PSO 8	К5							

CONTENT

I. Experiments

- 1. Determination of integral and differential heat of solution by calorimetry.
- 2. Determination of heat of neutralization of a strong acid by a strong base using calorimetry.
- 3. Determination of phase diagram for two component solid systems.
- 4. Determination of phase diagram for three component liquid systems.
- 5. Determination of bond refractions by refractometry.
- 6. Understanding the interaction between the components of a binary mixture using refractometry.
- 7. Determination of equivalent conductance of a strong electrolyte at infinite dilution using conductometry.
- 8. Determination of equivalent conductance of a weak electrolyte at infinite dilution using conductometry.
- 9. Determination of dissociation constant of a weak acid by conductometry.
- 10. Determination of solubility of sparingly soluble salt by conductometry.
- 11. Verification of Beer Lambert's law.
- 12. Beer Lambert's law Simultaneous estimation of Mn and Cr in a solution containing $KMnO_4$ and $K_2Cr_2O_7$.
- 13. Conductometric Titration Strong acid vs Strong base
- 14. Conductometric Titration Mixture of strong acid and weak acid vs Strong base
- 15. Conductometric Titration Mixture of halides vs silver nitrate
- 16. Conductometric Titration CuSO4 vs NaOH or MgSO4 vs BaCl2
- 17. Determination of standard electrode potential.
- 18. Determination of solubility of AgCl from emf measurements.
- 19. Determination of pKa of a weak acid from emf measurements.
- 20. Determination of pH of buffer solutions from emf measurements.

II. Project Based Learning

- 1. Spectrophotometric analysis of coloured samples (dyes, natural pigments, metal ions etc.)
- 2. Study of interaction between samples by refractometry.
- 3. Use of conductance measurements to study interactions, determine physical quantities, etc.

Textbooks

1. A. Findlay, J.A. Kitchener, Findlay's Practical Chemistry, 8th Edition, Prentice Hall Press,1954.

B. Viswanathan and P.S. Raghavan, Practical Physical Chemistry, Viva Books, 2012.

References

1. R.C. Das and B. Behera, Experimental Physical Chemistry, McGraw-Hill Education, 1984. Suggested Reading

Farrington Daniels, Experimental Physical Chemistry, 7th Edition, McGraw-Hill Inc., US, 1970.

M.Sc. Course Articulation Matrix																
Course			Prog	gram Out	comes					Pro	gram Spec	ific Outco	omes			Cognitive
Outcomes																Level
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3	2	-	-	-	-	-	3	-	-	-	-	3	-	-	K1
CO 2	3	2	1	-	-	-	-	-	-	-	2	-	3	2	-	K2
CO 3	3	2	1	-	-	-	-	-	-	-	2	-	3	2	-	K3
CO 4	3	2	1	-	-	-	-	-	-	-	2	-	3	2	-	K4
CO 5	3	3	3	3	1	-	2	-	-	-	2	-	3	3	3	K5
Wt. Avg. 3 2.2 1.5 3 1 - 2 3 - - 2 - 3 2.2 3																
Overall Mapping of the Course PO- 2.1																
PSO – 2.6																

ORGANIC REACTION MECHANISM

Cour	rse Code							
C	redits	4						
Hour	s / Cycle	4						
Ca	tegory	Part I NA	Core		Theory			
Sei	mester	II						
Ye	ear of	From the acade	emic year 2023 - 24 onwards					
Impler	nentation							
Course Objectives1. To gain mechanistic insight on substitution, addition, elimination rearrangement reactions in aliphatic and aromatic compounds.2. To understand the basics of pericyclic reactions and photochemical reac with reference to stereoselectivity or regioselectivity3. To understand the role played by certain reagents in functional g transformation								
CO#		Co		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)			
On co	ompleting t	he course succes	ssfully, the student will be abl	e to				
CO1	Recall (i) certain orgoriganic re	the definitions a ganic reactions (ii) actions	nd the reaction sequences asso the characteristics of reagents	ociated with employed in	PSO1	K1		
CO2	Explain (i organic re) the reaction co actions (ii) the util	nditions and mechanistic aspectity of reagents for organic conve	ct of certain ersions	PSO2	K2		
CO3	Identify (i) the reaction pathway of organic reactions (ii) the reagents for organic transformationPSO2 PSO3 PSO4K3							
CO4	Image: Analyse (i) the regioselectivity and stereoselectivity of organic reactionsPSO4K4(ii) the proper choice of reagents for organic transformationPSO8K4							

CO5	Determine the proper choice of reagents and reaction conditions	PSO4	K5
	employing substitution, elimination, addition, coupling, rearrangement,	PSO8	
	photochemical and pericyclic for organic synthesis/functional group		
	transformations		

	SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL								
Ι	Substitution and Elimination Reactions	12	CO1-	K1 – K5								
	1.1 Aliphatic substitution: S_N1 , S_N2 , S_Ni , S_N1' , S_N2' and		CO5									
	tetrahedral mechanisms, neighboring group participation,											
	ambident nucleophile - Mitsunobu reaction											
	1.2 Aromatic substitution: Unimolecular and bimolecular											
	mechanism, benzyne mechanism											
	1.3 Elimination Reactions: E1, E2 and E1cB mechanisms,											
	substitution vs elimination, orientation of product formation,											
	stereochemical criteria of E2 reactions, Peterson elimination,											
	Julia olefination, Mc-Murry reaction - Pyrolytic eliminations:											
	Pyrolysis of esters, Chugaev reaction, Cope elimination											
II	Addition and Coupling Reactions	12	CO1-	K1 – K5								
	2.1 Electrophilic Addition: Hydration, halogenations and		CO5									
	hydrohalogenation of alkenes, dienes, alkynes and allenes.											
	2.2 Nucleophilic addition to multiple bonds: Mannich reaction,											
	Stobbe, Darzens, Thorpe, Wittig reaction, Robinson											
	annulations, Acyloin condensation, Henry reaction											
	2.3 Coupling reactions: Heck Reaction, Sonogashira coupling,											
	Suzuki coupling, Stille coupling											
III	Molecular Rearrangements	12	CO1-	K1 – K5								
	3.1 Classification – Whitmore 1,2-shift		CO5									
	3.2 Rearrangement to electron deficient carbon: Arndt-Eistert											
	Homologation, Benzylic acid, Semipinacol, Wagner-Meerwein,											
	Demjanov, dienone-phenol and Wolff rearrangements											
	3.3 Rearrangement to electron deficient nitrogen: Stieglitz											
	rearrangement											
	3.4 Rearrangement to electron deficient oxygen: Baeyer-Villiger											
	and Daikin rearrangements.											
	3.5 Rearrangement to electron rich carbon: Stevens,											
	Sommerlet-Hauser, Wittig and Favorskii rearrangements											
IV	Pericyclic and Photochemistry	12	CO1-	K1 – K5								
	4.1 Pericyclic reactions: Electrocyclic (butadiene-cyclobutene		CO5									
	interconversion), cyclo-addition (2+2) and (4+2) systems only,											

	is matrices in (1.2, 1.2, 1.4, 8, 2.2) and the later rise matrices EMO	[
	signatropic $(1,2,1,5,1,4 \otimes 5,5)$ and cheletropic reactions, FMO			
	and orbital correlation diagrams.			
	4.2 Organic photochemistry: General principles,			
	photochemistry of carbonyl compounds, Norrish Type I and			
	Type II reactions, Photoreduction, Photo-oxidation, Paterno-			
	Buchi reaction, di- π -methane rearrangement, Barton			
	rearrangement, Photoisomerization			
V	Pericyclic and Photochemistry	12	CO1-	K1 – K5
	5.1 Tri-n-butyl tin hydride, Sn/HCl, alkyl Lithium, organo Zinc		CO5	
	reagent, organo palladium reagent, organo tin reagent, organo			
	magnesium reagent, and Schwartz reagent			
	5.2 Lithium diisopropylamide, trimethylsilyl iodide,			
	benzyltriethylammonium halides and crown ethers			
Textb	pooks			
1. V K	K Alhuwalia and Rakesh Kumar Parashar, Organic Reaction Mee	chanism, 4 ^t	^h Edition,	Alpha Narosa
Publis	hing House, India, 2019.			_
2. Micl	hael B Smith, Jerry March, March's Advanced Organic Chemistry,	7 th Edition	, Wiley St	udents Edition,
India,	2016.			
3. Jon	athan Clayden, Nick Greeves, Stuart Warren, Organic Chemist	ry, 2 nd Edi	ition, Oxf	ford University
Press,	India, 2019,			-
4. Pete	er Sykes, A Guidebook to Mechanism in Organic Chemistry, 6 th	¹ Edition, I	Pearson In	ndia Education
Service	es, India, 2020			
Refere	ences			
1. Wil	lliam Carruthers, Iain Coldham, Modern Methods of Organic	Synthesis,	4 th Editio	on, Cambridge
Univer	rsity Press, India, 2020.			
2. Fran	ncis A Carey and Richard J Sundberg, Advanced Organic Chemistr	y Part (A 8	$(a B) 5^{th} Ed$	ition, Springer,
New Y	York, USA, 2007			
3. Mic	hael B Smith, Organic Synthesis, 3 rd Edition; Elsevier, USA, 2010).		
Sugge	ested Reading	1		1
1. S. F	H. Pine, Organic Chemistry, 5 th Edition, Tata McGraw Hill, Speci	al Indian E	dition, In	$d_{1a}, 200^{7}.$
2. 1. H	1. Lowry K. S. Kichardson, Harper and Kow, Mechanism and theo K_{L} = 1, 1004	ry in organ	ic chemis	try, 2 ⁴⁴ Edition,
New Y	York, 1981.			
Onlin	e Resources (accessed on 28 06 2022)			
	a historices (accessed 011 20.00.2022)			

http://epgp.inflibnet.ac.in/

https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_pg/664

	M.Sc. Course Articulation Matrix															
Course Outco mes			Pr	ogram Ou	itcomes					Р	rogram Sp	pecific Out	comes			Cognitive Level
	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	-
CO 1	2	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	2	-	-	-	-	-	-	-	2	-	-	-	-	-	-	K2
CO 3	2	2	-					-	2	3	2	-	-	-	-	K3
CO 4	-	2	-	-	-	-	-	-	-	-	2	-	-	-	3	K4
CO 5	-	2	-	-	-	-	2	-	-	-	2	-	-	-	3	K5
Wt. Avg.	2	2	-	-	-	-	2	3	2	3	2	-	-	-	3	
	Overall Mapping of the Course PO: 2.0 PSO: 2.4															

COORDINATION AND BIOINORGANIC CHEMISTRY - I

Course	Code										
Cred	lits	4									
Hours /	Cycle	4									
Categ	gory	Part	NA	Core		Theo	ory				
Seme	ster	II									
Year	of	From	the acade	emic year 2023 - 24 onwards							
Impleme	entatio										
n											
		1. To	understa	and the fundamental concepts	s and g	geometrical c	configurations of				
		coordination complexes									
Cou	rse	2. To identify the splitting of d orbitals based on the magnetic property of coordination									
Object	tives	3 To appreciate the various reaction mechanisms of coordination complexes									
		5. 10 4 To	realize th	e the various feaction mechanism e significance of trace elements	in life a	and metal com	plexes				
		ч. 10 асі	ds	a significance of trace cicilients	III IIIC a	ind metai con	ipiexes in nucleie				
CO#			Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comp	pleting t	he cour	se succe	ssfully, the student will be able	e to						
CO1	Recall t	he fund	lamental o	concepts and definition of impor	ortant	PSO1,	K1				
	termino	ologies	of coordi	ganic	PSO2						
	chemist	chemistry									
CO2	Explain	ı (i) fun	idamental	concepts of coordination and	bio-	PSO1,	K2				
	inorgan	uc chem	nistry (ii)	the bonding and reaction kinetic	cs in	PSO2					
	comple	xes and	(111) signi	ticances and functions of impor	rtant						
	bio-inorganic compounds										

CO3	Apply fundamental concepts and theories of coordination and	PSO2,	K3
	bio-inorganic compounds to explain the reactions of	PSO3,	
	complexes and biological processes	PSO4	
CO4	Analyse the behaviour and reactivity of coordination and bio-	PSO2,	K4
	inorganic compounds based on the fundamental concepts	PSO4	
CO5	Compare and evaluate the behaviour and chemical processes	PSO2,	K5
	of coordination and bio-inorganic compounds	PSO3,	
		PSO4	

SYLLABUS										
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL						
Ι	 Coordination chemistry – Introduction 1.1 Terminologies; Preparation of complexes; Detection of complex formation; Stability constants-types and determination, solubility method, electrochemical method, spectrophotometric method and Job's method; Factors affecting the stability constants; Chelates – chelate effect, factors affecting the stability of chelates and importance of chelates in biology. 1.2 Isomerism – Structural and Stereo isomerism (Geometrical isomerism in square planar and octahedral complexes; Optical isomerism in tetrahedral and octahedral complexes) 1.3 Application of coordination complexes and water softening. 	12	CO1- CO5	K1 – K5						
II	Advanced Theories of coordination complexes and Magnetism 2.1 Limitations of Valence Bond Theory; Crystal Field Theory – splitting of <i>d</i> orbitals in tetrahedral, octahedral and square planar field, Calculation of CFSE for high spin and low spin complexes; Determination of Δ_0 , Factors affecting Δ_0 , Spectrochemical series, Evidences favouring CFSE; Jahn – Teller distortion (static and dynamic) and its consequences. 2.2 MOT for octahedral complexes (σ and π bonding), σ donor, π donor and π acceptor ligands; Δ_0 for strong field and weak field ligands based on MOT. 2.3 Magnetic property of the complexes: Spin-orbit coupling, effect of spin-orbit coupling on magnetic moments, quenching of orbital magnetic moments.	12	CO1- CO5	K1 – K5						
III	 Kinetics and reaction mechanisms of complexes 3.1 Substitution reactions in octahedral complexes: Inert and labile nature of complexes; different types of substitution reactions; SN1, SN2 and SNCB mechanisms. 3.2 General mechanism of square planar substitution reactions, Trans effect and theories of trans effect. 3.3 Mechanism of electron transfer reactions: Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere 	12	CO1- CO5	K1 – K5						
	electron transfer reactions; nature of the bridging ligand in inner									
--	--	--	------------------	---------	--	--	--	--	--	--
	3.4 Photo-redox reaction in complexes and its applications									
IV	 Bio-inorganic Chemistry – I 4.1 Introduction to metal – porphyrin (heme), metal – chlorin (chlorophyll) and metal – corrin (Vitmain B12) bio-molecules – general structural features only 4.2 Fe in biology: Storage and transport of Fe – ferritin, transferrin and siderophores 4.3 Oxygen transport proteins - Hemoglobin and myoglobin – structural features and functions of Hb and Mb, oxygen binding modes in Hb, Hill plot and Bohr effect. Oxygen uptake metalloproteins – Hemerythrin (Hr) and hemocyanin (Hc) – structural features and functions 	12	CO1- CO5	K1 – K5						
V	 Bio-inorganic chemistry – II 5.1 Essential elements, inorganic micronutrients, trace and ultratrace elements in bio-inorganic chemistry – definition, examples and their biological significance. 5.2 Ion transport across cell membranes – Active and passive transports, membrane potential, Na and K channels and Na-K pump 5.3 Transition metal complexes as nucleic acid structural probes: Metal-Nucleic acids interaction: fundamental interactions with nucleic acids - coordination, intercalation and hydrogen bonding; fundamental reactions with nucleic acids chemistry and 	12	CO1- CO5	K1 – K5						
Tartha	hydrolytic chemistry.									
1. R Go 2. J E H reactivit 3. K Bu D.W. A 4. Asim 5. K Hu	 Textbooks 1. R Gopalan and V Ramalingam, Concise Coordination Chemistry, Vishal Publishing House Pvt. Ltd., 2001 2. J E Huheey, EA Keiter, RL Keiter and O K Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 3. K Burger, Coordination Chemistry: Experimental methods (English translation edited by I.T. Miller and D.W. Allen), Butterworths & Co Publishers, 1973. 4. Asim K. Das, Bioinorganic Chemistry, Books & Allied Ltd., 2007 5. K Hussain Reddy, Bioinorganic Chemistry, New Age International, 2007 									
Referen 1. Keith 2. I Ber 3. Rose Sugges 1. G L I 2. Peter Press, 2	 Keiterences Keiterences Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA, 1977 I Bertini, H B Gray, S J Lippard and Valentine, Bioinorganic Chemistry, University Science Books, 1994 Rosette M. Roat-Malone, Bioinorganic Chemistry: A Short Course, John Wiley and Sons Inc., 2007 Suggested Reading G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic Chemistry, 5th Edition, Oxford University Press, 2010 									
Online 1. http:// 2. http:// 3. http://	Resources (accessed on 28 June 2022) //epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfu //epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfu //epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfu	ahs6rkiyTA ahs6rkiyTA ahs6rkiyTA	== _== _==							

M.Sc. Course Articulation Matrix																
Course			Prog	gram Ou	itcomes					Pro	gram Spec	ific Outco	omes			Cognitive
Outcomes	PO	PO	PO	PO	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
	1	2	3	4												
CO 1	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	-	2	2	-	-	-	-	-	3	2	3	-	-	-	-	K3
CO 4	-	-	2	-	-	-	-	-	3	-	2	-	-	-	-	K4
CO 5	-	2	-	-	-	-	-	-	3	2	2	-	-	-	-	K5
Wt. Avg.	3	2	2	-	-	-	-	3	3	2	2					
Overall Mapping of the Course PO:2.3																
	PSO:2.5															

GROUP THEORY AND QUANTUM CHEMISTRY

Course	e Code									
Cre	dits	4								
Hours	/ Cycle	4								
Cate	egory	Part NA	Core		Theory					
Sem	ester	II								
Yea	ur of	From the aca	demic year 2023 - 24 onwards							
Implem	entation									
 Course Objectives 1. To identify symmetry elements in molecules and arrive at their point group. 2. To utilize the knowledge of symmetry to predict electronic transitions and to recognize IR and Raman active vibrations. 3. Acquire a finite insight into quantum chemistry by applying its principles to simp systems and developing the solutions. 4. Introduce basic ideas for the application of quantum chemistry to complex system and thereby developing approximate solutions. 										
CO#		Cou	rse Outcome(s)	1	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comp	pleting the	e course succe	ssfully, the student will be able	e to						
CO1	Recall the spectrosc	e fundamentals opy and quantu	ules,	PSO1	K1					
CO2	Classify r the applie simple system	nolecules based cation of group stems and mole	erate y to	PSO2, PSO3, PSO4	K2					
CO3	(i) Identif tables (ii) systems d	y point groups Solve the Sch lirectly and by u	nple	PSO2, PSO3, PSO4	К3					

CO4	Examine the (i) relation between symmetry elements and point	PSO2,	K4
	group, structure and possible spectroscopic transitions (ii)	PSO3,	
	results of the solution to the Schrodinger wave equation	PSO4	
CO5	Assess the significance of applications to group	PSO2,	K5
	theory/quantum chemistry to molecules/systems	PSO3,	
		PSO4,	
		PSO8	

	SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S								
				TAXONOMY LEVEL								
Ι	1.1 Fundamentals of group theory- Symmetry elements and	12	CO1-	K1 – K5								
	symmetry operations in molecules, Products of symmetry		CO5									
	operations, equivalent operations, Sub-groups, Classes of											
	symmetry operations, Group multiplication tables. Abelian and											
	1.2 Molecular point groups: Matrix representation of groups											
	Great orthogonality theorem. Reducible and irreducible											
	representations, Application of orthogonality theorem											
	1.3 Character tables- Construction of character tables for point											
	groups C _{2V} , C _{3V} and D _{2h} , Use of character tables in predicting											
	hybridization and IR & Raman active vibrations.											
II	2.1 Application of group theory to electronic spectra of ethylene,	12	CO1-	K1 – K5								
	formaldehyde, benzene and butadiene.		CO5									
	2.2 Postulates of quantum mechanics.											
	2.5 Functions and operators - Operator algebra, linear and non-											
	commuting operators Hermitian operators and their properties											
	eigen functions, eigen values - commutation of operators.											
	2.4 Quantum mechanical treatment of particle in a one-											
	dimensional box-Particle in a three-dimensional box-											
	Degeneracy- Bohr's correspondence principle											
III	3.1 One dimensional simple harmonic oscillator (complete	12	CO1-	K1 – K5								
	quantum mechanical treatment)		CO5									
	3.2 Rigid rotor (complete quantum mechanical treatment)											
	3.3 Quantization of angular momentum, Operators											
	corresponding to angular momenta (Lx, Ly, Lz and L ²) and their commutation relations. Spherical harmonics as eigen functions											
	of angular momentum operators L_{z} and L_{z}^{2} Ladder operators											
	3.4 Solution of the Schrodinger equation for the hydrogen atom.											
	radial and angular probability distributions, atomic orbitals-											
	Orbital approximation											
IV	4.1 Approximation Methods-Variation method (Application to	12	CO1-	K1 – K5								
	particle in a 1D box and He atom) and Perturbation method		CO5									
	(Application to particle in a slanting 1D box and He atom)-											
	Atomic units											
	4.2 Many electron atoms- born-Oppenneimer approximation -											
1	rienum atom- General principle of setting up wave function for											

	other many electron atoms -Slater type orbitals - Hartree and								
	Hartree-Fock SCF methods.								
	4.3 Spin orbitals: Construction of spin orbitals from orbitals and								
	spin functions, spin orbitals for many electron atoms, symmetric								
	and antisymmetric wave functions. Pauli's exclusion principle,								
	Slater determinants.								
V	5.1 VB Theory and MO Theory -Basics-MO configuration of	12	CO1-	K1 – K5					
	simple diatomic molecules		CO5						
	5.2 Bonding-VB treatment of H ₂ and MO treatment of H ₂ +								
	5.3 Hybridization involving s and p orbitals - quantum mechanical								
	treatment (sp, sp ² , sp ³)								
	5.4 HMO Calculations-evaluation of coefficients and eigen								
	values for ethylene, 1,3-butadiene, benzene and cyclopentadienyl								
	- electron density-bond order and free valence index.								
Textbo	oks								
1. F. A.	Cotton, Chemical Applications of Group Theory, John Wiley and	Sons, 2008							
2. K. Ve	era Reddy, Symmetry and Spectroscopy of Molecules, 2nd edition,	New Age F	ublishers,	India, 2020.					
3. Dona	ld A. McQuarrie, Quantum Chemistry, Viva Books, UK, 2016.								
4. I.N. I	evine, Quantum Chemistry, 5th edition, Pearson Education, Inc., I	ndia, 2000.							
5. R K I	Prasad, Quantum Chemistry, New Age International Publisher, Ind	ia, 2020							
Referen	ices								
1. D. M.	Bishop, Group Theory and Chemistry, Dover Publications, USA,	1993.							
2. A. K.	Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, In	ndia, 1994.							
3. P.W.	Atkins, Physical Chemistry, 6th Edition, Oxford University Press, 1	998.							
Sugges	ted Reading								
1. P.J. D	elahay, Double Layer and Electrode Kinetics, Interscience Publish	ers, New Y	ork, 1965						
2. A. I. I	Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New Yo	ork. 2000.							
3 A G	Briggs Vibrational Frequencies of Sulfur Dioxide I Chem Edu	47 (1970) 3	91						
4 F F	A E E Stafford C W Holt and C I Daulson Vibration Rotation Spactrum of HCl I Cham Edu 40								
(1963) 245									
5 H H	R Schor and F L Teixeira The Fundamental Rotational-Vibratio	nal Band c	of CO and	NO I Chem					
Edu 71	(1994) 771			ivo, j. chem					
Online	Besources (accessed on 22 June 2022)								
1 http://	/epop inflibnet ac in /Home /ViewSubject?catid=13G8VoubmrEfi	1hs6rkivTA	==						
2 http:/	/ epop inflibrat ac in / Home / ViewSubject?catid=13C9VouhmrEf	11301Kiy I II 1hc6rlziv/T A							
∠. nup:/	/epgp.initioner.ac.iii/ rioine/ viewsubjectreatiu-15G8vouniiirFit	LIISOTKIY I A							

	M.Sc. Course Articulation Matrix															
Course			Pro	gram Outco	omes					Pro	gram Speci	ific Outco	mes			Cognitive
Outcomes	comes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 PSO4 PSO5 PS									PSO6	PSO7	PSO8	Level			
CO 1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	3	3	2	-	-	-	-	-	2	3	2	-	-	-	-	K2
CO 3	3	3	2	-	-	-	-	-	2	3	2	-	-	-	-	K3
CO 4	3	3	2	-	-	-	-	-	2	3	2	-	-	-	-	K4
CO 5	3	3	2	-	-	-	-	-	2	3	2	-	-	-	2	K5
Wt. Avg.	3	3	2	-	-	-	-	3	2	3	2	-	-	-	2	
Overall Mapping of the Course PO – 2.7																
	PSO -2.4															

CO5

HETEROCYCLIC AND POLYMER CHEMISTRY

Cou	rse Code										
(Credits	5									
Hou	rs / Cycle	4									
C	ategory	Part	NA	Elective		Theory					
Se	emester	II									
Ŋ	ear of	From t	the acad	emic year 2023 - 24 onwards							
Imple	ementation			-							
Course	e Objectives	1. To the heteroc 2. To le techniq	inderstand yclic com earn the cl ues with i	d the classification, nomenclature, syn pounds naracteristic of polymers, and differen ts mechanism.	nthesis and nt types of	reaction of polymerizat	some				
CO#			Course Outcome(s) PSO Addressed Bloom Taxono Level (K1 to B								
On cor	npleting the	e course successfully, the student will be able to									
CO1	Recall (i) and (ii) t	(i) the classification, nomenclature and structure of heterocyclesK1(ii) the classification, nomenclature and fundamental aspects ofPSO1									
CO2	Explain (or more l and appli	i) the syn neteroato cation of	thesis and ms (ii) th polymers	d reactivity of certain heterocycles e synthesis, properties, fundamenta	with one l aspects	PSO2	K2				
CO3	Apply the of certain aspects an	e knowled heterocy nd other a	lge (i) of ycles. (ii)	organic chemistry in the synthesis/r of chemistry in explaining the med- lated to polymers.	reactions chanistic	PSO4	K3				
CO4	Analyse protocol/ polymer l	(i) the reactions	chemica s of cert various f	I reactions involved in the sain heterocycles (ii) the character undamental aspects.	synthetic istics of	PSO4, PSO8	K4				
CO5	Evaluate (ii) the character	aluate (i) the synthetic protocols and reactions of certain heterocycles PSO4, K5 the utility of polymers to a specific purpose based on their PSO8									
				SYLLABUS							
UNIT			CC	DNTENT	HOUE	RS COs	BLOOM'S TAXONOMY LEVEL				
Ι	Heterocycli	c Chemis	stry-I		12 CO1 K1 – K5						

1.1 Classification and nomenclature of the heterocyclics based on the

1.2 Synthesis and reaction of furan, pyrrole, thiophene and pyridine. 1.3 Synthesis and reaction of five-membered heterocycles with two or more heteroatoms: Pyrazole from diazomethane, Imidazole from dinitro tartaric acid, Conforth method of preparation of oxazole,

nature of the heteroatom and size of the ring.

	Isoxazoles from tetraethoxypropane, Thiazole from chloro acetaldehyde, Triazole from formyl hydrazide and Tetrazole from hydrazoic acid.			
II	 Heterocyclic Chemistry-II 2.1 Synthesis and reaction of six-membered heterocycles with two or more heteroatoms: Preparation of Pyridazine from maleic dialdehyde, Pyrimidine from barbituric acid, Uracil from urea, and Pyrazine from ethylene diamine. 2.2 Fused heterocycles: Synthesis and reaction of indole, quinoline, isoquinoline and benzofurans. 	12	CO1 - CO5	K1 – K5
III	 Polymer Chemistry– I 3.1 Nomenclature and classification of polymers, Degree of polymerization and Functionality 3.2 Mechanism of Polymerization: Addition (radical, ionic and coordination), condensation, copolymerization and their mechanisms. 3.3 Ziegler-Natta polymerization with mechanism, Stereo regular polymers - syndiotactic, isotactic and atactic polymers 	12	CO1 - CO5	K1 – K5
IV	 Polymer Chemistry– II 4.1 Molecular weight of polymers: Number average, weight average, viscosity average – Inter-relationship. Polydispersity - molecular weight distribution in polymers. 4.2 Techniques of polymerization: emulsion, bulk, solution and suspension. 4.3 Polymer degradation: Types of degradation- thermal, mechanical, photo, hydrolytic and oxidative degradations. Photo-stabilizers. 4.4 Glass transition temperature- Basics and factors affecting T_g 	12	CO1 - CO5	K1 – K5
V	Polymer Chemistry– III 5.1 Plastics: Thermoplastics, ABS plastics: Synthesis, properties and applications – Thermosetting, Bakelite: Synthesis, properties and applications – Compounding of plastics – Biodegradable plastics. 5.2 Rubber: Classification – Preparation, properties and applications of SBR rubber, Silicon rubber, neoprene, nitrile rubber and vulcanization.	12	CO1 - CO5	K1 – K5
Textbo 1. I L F Pearsor 2. Raj K 3. Fred Referen 1. Thor 2. John 3. V R Publish Sugges 1. R. Sa Interna 2. V K	boks Finar, Organic Chemistry, Volume 2: Stereochemistry and the Chemistry M n Education India, India, 2002. K Bansal, Heterocyclic Chemistry, 6 th Edition, New Age Publishers, India, W Billmeyer, Textbook of Polymer Science, 3 rd Edition, Wiley Student E nces mas L Gilchrist, Heterocyclic Chemistry, 3 rd Edition, Pearson Publishers, I Joule, K Mill, Smith, Heterocyclic Chemistry, 3 rd Edition, CRC Press, US Gowariker, N V Viswanathan, Jayadev Sreedhar Polymer Science, 3 rd Edition ers, India, 2019. Sted Reading unghi and M. M. Srivastava, Green chemistry: Environment Friendly Alter tional Ltd, India, 2003. Abluvalia, Green Chemistry, 2 uEdition, Ana Paolea Part, Ltd. 2016	Natural Pro , 2019. dition, Ind ndia, 2005 A, 2018. tion, New matives, A	oducts, 5 ia, 2007. Age Inte	nce
2. V. K 3. B. M	. Aniuwalia, Green Chemistry, 2nd Edition, Ane Books Pvt. Ltd., 2016. ichael Smith, Organic synthesis, McGraw Hill International Edition, 1994	l.		

Online Resources (accessed on 28 June 2022)

1. https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_pg/667

2. http://epgp.inflibnet.ac.in/

	M.Sc. Course Articulation Matrix															
Course			Pro	gram Ou	itcomes					Pro	gram Spec	ific Outco	omes			Cognitive
Outcomes	PO	PO	PO	PO	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
	1	2	3	4												
CO 1	1	-	-	-	-	-	-	2	-	-	-	-	-	-	-	K1
CO 2	2	-	-	-	-	-	-	-	1	-	-	-	-	-	-	K2
CO 3	-	2	-	-	-	-	-	-	-	-	2	-	-	-	-	K3
CO 4	-	2	-	-	-	-	1	-	-	-	1	-	-	-	1	K4
CO 5	-	2	-	-	-	-	1	-	-	-	1	-	-	-	1	K5
Wt. Avg.	1.5	2	-	-	-	-	1	2	1	-	1.3	-	-	-	1	
Overall Mapping of the Course PO: 1.5																
PSO: 1.3																

GREEN AND ENVIRONMENTAL CHEMISTRY

Course	Code										
Cred	lits	5									
Hours /	Cycle	4									
Categ	gory	Part	Part NA Elective Theory								
Seme	ster	II	II								
Year	of	From	the acad	emic year 2023 - 24 onwards							
Implem	entatio										
n											
Cou Objec	rse tives	en chemistry green metho nistry	and the prepa ds	ration of							
CO#	CO# Course Outcome(s) PS Addre										
On com	pleting t	he cou	rse succe	ssfully, the student will be abl	le to						
CO1	Recogn chemis	nize the try	fundame	ntal principles of green and env	vironmental	PSO1	K1				
CO2	Explain chemis measur	n (i) the try of th es to pro	nples ii) the ent and the	PSO3	K2						
CO3	Apply compo analytic	of organic mistry, and	PSO4	К3							
CO4 Analyse i) qualitatively the greenness of a given organic reaction (ii) the significance of various components of atmosphere (iii) sources, sinks, and environmental hazards posed by pollutants							K4				

CO5	Determine the greenness of a given organic reaction based on certain	PSO4,	K5
	principles of green chemistry. Assess qualitatively the implications of	PSO8	
	various pollutants on environment.		

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 Introduction to Green Chemistry 1.1 Green chemistry: Need for green chemistry, Twelve principles of green chemistry with examples, calculation of atom economy of substitution, elimination, addition and rearrangement reaction with examples. 1.2 Synthesis involving basic principles of green chemistry - paracetamol, Ibuprofen, and ω-caprolactam 	12	CO1- CO5	K1 – K5
II	 Green Chemical Reactions 2.1 Multi-component reactions (Biginelli, Ugi and Passerini reaction) Prevention or minimization of hazardous products and choice of solvents. 2.2 Sonochemistry (Simmon-Smith reaction), microwave induced reactions (Hydrolysis of esters, oxidation of toluene and alcohols), reactions in organic solvents (Decarboxylation and Diels Alder reaction) polymer supported reagents, reactions in aqueous medium and ionic liquid supported reaction. 2.3 Limitations of green organic syntheses 	12	CO1- CO5	K1 – K5
III	 Environmental Chemistry – I 3.1 Atmospheric chemistry – Structure of the earth's atmosphere – Chemistry of lower atmosphere - Formation of greenhouse gases - Thermochemical & photo chemical reactions in atmosphere – Photochemical smog, PAN- Acid rain – Dioxins – Greenhouse effect - Climate change 3.2 Chemistry of upper atmosphere – Ozone layer formation & depletion – The Chapman cycle - The reactions in the polar stratospheric clouds and the mechanism of ozone hole formation 3.3 Lithosphere – Zonal structure of the earth - Chemical composition of the crust, mantle & core – Physico-chemical characteristics of soil - organic carbon, cation exchange capacity, C/N ratio, soil acidity & salinity 	12	CO1- CO5	K1 – K5
IV	Environmental Chemistry – II 4.1 Hydrosphere – Formation & chemistry of water – Anomalous properties of water – Hydrogen bonding in	12	CO1- CO5	K1 – K5

 biological systems – The Frank-Wen model - Marine chemistry Chemical constituents of sea water – Hydrological cycle - Fresh water chemistry – Aeration – Water additives – Isotopes 4.2 The Biosphere – The chemistry of life - Aerobic & anaerobic processes – Photosynthesis – Respiration & decay – Fermentation – Biodegradation - The bio geo chemical cycles Carbon cycle – Nitrogen cycle – Nitrification & denitrification – Phosphorous cycle & Sulphur cycle 4.3 Lithosphere – Biosphere - Hydrosphere interaction - Solid Waste - Radioactive waste - Plastic waste - Microplastics – Marine pollution - Thermal pollution - Agricultural Pollution 			
 V Environmental Chemistry – III 5.1 Analysis of air, soil & water pollutants - Sampling of air pollutants – SOx NOx ozone hydrocarbons & particulates – Soil analysis – pH – Electrical conductivity – CEC – OM – Percentage of N, P, K, Ca, Mg, S, Na - Water quality standards – DO, BOD, COD – TDS & TSS – Analysis of heavy metals – pH - Turbidity 5.2 Air pollution control – Soil pollution control – Bio remediation – Phyto remediation - Treatment of water at the discharge points – Domestic waste water – Industrial waste water – Water from atomic power plants – Agricultural waste water – The primary, secondary & tertiary treatments 5.3 Application of remote sensing in environmental studies – Pollution studies – Soil conservation – Watershed management – Vegetation mapping – Drought & flood studies – Forest survey – Environmental impact assessment – Environmental auditing; Green tribunal bench, Role of an individual in conservation of environment. 	12	CO1- CO5	K1 – K5
Textbooks		1	
1. V K Ahluwalia, Green Chemistry: A Textbook, Alpha Science Internat	ional Ltd,	India, 20	013
2. A. K. De, Environmental Chemistry, New Age Publisher International,	, India, 20	06.	
3. B. K. Sharma, Environmental Chemistry, Krishna Prakashan Media Pv	t. Ltd. , In	dia, 2014	ŀ.
References			
1. P S Sindhu, Environmental Chemistry, New Age International Private	Limited, I	ndia, 201	10.
2. Gary. W. Van Loon, Environmental Chemistry, 3rd Edition, OUP Oxf	ford, 2010	•	
3. H. Kaur, Environmental Chemistry, Pragati Prakasan Meerut, India, 20	16.		
Suggested Reading			1 0 .
1. R. Sanghi and M. M. Srivastava, Green chemistry: Environment Friend	ly Alterna	tives, Alj	pha Science
International Ltd, India, 2003.			
2. V. K. Ahluwalia, Green Chemistry, 2nd Edition, Ane Books Pvt. Ltd.,	India, 201	6.	
3. P Tundo, A Perosa, F Zacchini, Methods and Reagents in Green Cherr	nistry, Edi	ted by W	'iley-
Interscience, 2007	<u>.</u>	- ·	1 - 1
4. G. S. Sodhi, Fundamental concepts of Environmental Chemistry, Alph	a Science	Internati	ional Ltd,
India, 2000.	D11 11		0.2
5. Julian E Andrew, An introduction to Environmental Chemistry, Wiley-	DIACKWEII	, ок, 20	03.

6. James E. Girald, Principle of Environmental Chemistry, 3rd Edition, Jones and Bartlett Publishers, Inc, USA, 2013.

Online Resources (accessed on 28 June 2022)

1. https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_pg/667

2. http://epgp.inflibnet.ac.in/

	M.Sc. Course Articulation Matrix															
Course			Prog	gram Ou	itcomes					Pro	gram Spec	ific Outco	omes		Cognitive	
Outcomes	PO	PO	PO	PO	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
	1	2	3	4												
CO 1	2	-	-	-	-	-	-	2	-	-	-	-	-	-	-	K1
CO 2	2	-	-	-	-	-	-	-	-	2	-	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	-	-	3	-	-	-	-	K3
CO 4	-	3	-	-	-	-	2	-	-	-	3	-	-	-	1	K4
CO 5	-	3	-	-	-	-	2	-	-	-	3	-	-	-	1	K5
Wt. Avg.	2	3	-	-	-	-	2	2	-	2	3	-	-	-	1	
	Overall Mapping of the Cour											e Course	PO: 2.0			
														PSO: 2		

NATURAL PRODUCTS AND MEDICINAL CHEMISTRY

Course (Code											
Credi	ts	5										
Hours /	Cycle	4										
Catego	ory	Part	NA	Elective		Theory						
Semes	ter	II										
Year of		From the academic year 2023 - 24 onwards										
Implemen	itation											
Cours Objecti	se lves	1. To u alkaloid 2. To g drugs a	 To understand the classification of the biomolecules like carbohydrates, terpenoids, alkaloids, steroids, vitamins, nucleic acids and lipids To gain insight on the essential basic principles of medicinal chemistry, classification of drugs and the preparation of certain specific drugs 									
CO#			Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On comple	eting the	e course	e success	fully, the student will be able	to							
CO1	Recall t produc	the fund: ts and m	amental a redicinal o	spects and concepts related to na chemistry	atural	PSO1	K1					
CO2	Explair elucida aspects	n the (i) tion of /concep	classificat certain n ots of mec	ion, structural features and struc atural products (ii) the fundam licinal chemistry	ctural iental	PSO2, PSO3	K2					
CO3	Apply elucida	(i) the kr tion and	nowledge synthesi	of organic reactions in the struc s of certain natural products (ii	ctural) the	PSO4	K3					

	concepts of medicinal chemistry to mechanism of action of drugs		
CO4	Analyse (i) the various steps involved in the structural elucidation and synthesis of certain natural products (ii) the qualitative and quantitative effects of structural modifications on drug activity	PSO4, PSO8	K4
CO5	Evaluate (i) the synthetic protocol related to the structural elucidation and synthesis of certain natural products (ii) the activity of the drugs qualitatively based on the fundamental concepts of medicinal chemistry	PSO4, PSO8	К5

	SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL								
Ι	 Natural Products-I 1.1 General methods of structural elucidation of natural products 1.2 Carbohydrates: Classification, structural features of starch and cellulose. 1.3 Terpenes: Classification, isoprene and special isoprene rules, structural elucidation of β-carotene. 1.4 Alkaloids: Classification, structural elucidation of papaverine, synthesis of quinine from ethyl quininate 	12	CO1- CO5	K1 – K5								
II	Natural Products-II 2.1. Steroids: Classification of steroids, synthesis of cholesterol from cholestanol, testosterone and progesterone from cholesterol 2.2 Nucleic acids: Watson-Crick model of DNA, RNA and its types. Synthesis of adenine and guanine from trichloropurine, cytosine from malondialdehyde acetal, thymine from ethyl acrylate 2.3: Vitamins: Classification, synthesis of vitamin C from D- glucose	12	CO1- CO5	K1 – K5								
III	 Medicinal Chemistry-I 3.1 Basic concepts in medicinal chemistry: Definition of Drug (WHO), Stereo chemical aspects of drugs, Classification of drugs - Mechanism of drug action - Physical and Chemical action. 3.2 Terminology: Therapeutic Index, Quantal dose, Graded dose, Efficacy, Potency, LD50, ED50, IC50, GI50 and EC50. 3.3 Pharmacokinetics and pharmacodynamics: Definition and differences, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties, Lipinski rule of five 	12	CO1- CO5	K1 – K5								

IV	Medicinal Chemistry-II	12	CO1-	K1 – K5				
	4.1 Enzymes: Binding interactions – Lock & Key and Induced		CO5					
	Fit models: Types of inhibitions - competitive, non-		005					
	competitive and uncompetitive: Kinetics – Michaelis-Menten							
	equation and its extension: Plots and applications (Derivation							
	not included)							
	4.2 Reserver Turnes of reserver Accrist Anteconist							
	4.2 Receptors: Types of receptors – Agonist, Antagonist,							
	Partial and Inverse agonist, Ion channels							
	4.3 Interaction of nucleic acids with drugs: Modes of targeting							
	DNA – Intercalating drugs, non-intercalating drugs, alkylating							
	and metalating agents; Modes of targeting RNA-antisense							
	therapy and inhibition of ribosomes							
V	Medicinal Chemistry-III	12	CO1-	K1 – K5				
	5.1 Classification of Drugs: Anesthetics, Analgesics, Sedatives,							
	Antibiotics, Antivirals, Anticancer, Antipyretic, Antidiabetics,		CO5					
	Drugs for cardiovascular disease. Drugs for metabolic		000					
	disorders (Definitions with examples).							
	5.2 Structure Activity Relationship (SAR) and Quantitative							
	Structure Activity Relationship (OSAR): Effect of Physico-							
	chemical properties Hansch Equation Craig's Plot and							
	Topliss Scheme: Bioisosteres							
	5.3 Mechanism of action of selected drugs: Remdesivir							
	Proprendel Deverybicin: Propresil – prodrug							
Textbook								
1 I I Fir	par Organic Chemistry Volume 2: Stereochemistry and the (hemistry Na	tural Pro	ducts 5th Edition				
Pearson F	ducation India India 2002			adets, 5th Eathon,				
2 Ashutos	sh Kar Medicinal Chemistry, 7th Edition, New Age Publishers, I	ndia 2008						
3 Bijov K	undu An Introduction to Medicinal Chemistry Wiley India 20	2000. 20						
4 G L Pa	trick. An introduction to medicinal chemistry, 4th Edition, Oxfor	20. rd University	Press III	< 2013				
Reference	area, in introduction to including chemistry, in Editori, Oxfo.	ca enversity	11000, 01	-, =0101				
1 Gurdee	n R Chatwal Oroanic Chemistry of Natural Products (Volume	1 & 2 5th E	dition H	malava Publishing				
House Pv	t. Ltd. India. 2019.), ou L		annungu i upinsining				
2.0 P Ac	rarwal. Natural Products (Volume 1 & 2), 38th Edition, 2010, K	rishna Praka	shan Med	lia Pvt. Ltd. India.				
2010.								
3. Gareth	Thomas, Medicinal Chemistry An Introduction, 2nd Edition, Wil	ey, UK, 2007	.					
Suggeste	d Reading							
1. G. K. C	hatwal, Organic Chemistry on Natural Products, Vol. 1, Himala	ya Publishing	House, N	Mumbai, 2009.				
2. G. K. C	hatwal, Organic Chemistry on Natural Products, Vol. 2, Himala	ya Publishing	House, N	Mumbai, 2009.				
3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2, Filinalaya Publishing House, Meerut, 1997.								
3. O. P. A	garwal, Chemistry of Organic Natural Products, Vol. 1, Goel Pu	blishing Hou	se, Meeru	it, 1997.				

5. Balkishen Razdan, Medicinal Chemistry, 2nd Edition, CBS Publishers and Distributors, India, 2019.

Online Resources (accessed on 28 June 2022)

1. http://epgp.inflibnet.ac.in/

2. https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_pg/671

	M.Sc. Course Articulation Matrix															
Course	Program Outcomes Program Specific Outcomes							Cognitive								
Outcomes	PO	PO	PO	PO	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
	1	2	3	4												
CO 1	1	-	-	-	-	-	-	2	-	-	-	-	-	-	-	K1
CO 2	2	-	-	-	-	-	-	-	2	1	-	-	-	-	-	K2
CO 3	-	2	-	-	-	-	-	-	-	-	2	-	-	-	-	K3
CO 4	-	2	-	-	-	-	1	-	-	-	2	-	-	-	1	K4
CO 5	-	2	-	-	-	-	1	-	-	-	2	-	-	-	1	K5
Wt. Avg.	1.5	2	-	-	-	-	1	2	2	1	2	-	-	-	1	
										Ov	erall Mapp	oing of the	Course	PO:1.5		
													PSO:1.6			

ORGANIC SPECTROSCOPY AND SYNTHETIC STRATEGIES

Course C	Code									
Credi	ts	4								
Hours /	Cycle	4								
Catego	ory	Part	NA	Core		Theo	ory			
Semes	ter	III								
Year	of	From	the acad	emic year 2023 - 24 onwards						
Implemen	tation									
Course Objectives		 To the To me 	 To understand the fundamental concepts of spectroscopy and to apply for predicting the structures of organic molecules To learn the principles of retro synthesis for proposing synthetic strategies of target molecules 							
		• To ag) learn the ents	functional group transformation u	using ox	idation, reduct	ion and coupling			
CO#			Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)			
On comple	ting the	course	successf	ully, the student will be able to	0					
CO1	Recall various retrosyn reductio	i) the for spectro nthetic on and o	undamenta oscopic tec analysis i coupling r	al concepts and significant term chniques ii) the basic terminologi ii) structure and uses of oxida eagents	ns of ies of ation,	PSO1 PSO2	K1			
CO2	Explain ii) the f reaction	n i) the c fundame ns using	concepts a ental conc ; oxidation	PSO2 PSO3	K2					
CO3	Apply predict	i) the ions ii)	concepts retro synt	and spectral data for struc hetic analysis for proposing read	ctural ction	PSO3 PSO4	K3			

	schemes for target molecules iii) the knowledge to choose a proper reagent for functional group transformation		
CO4	Analyse i) the UV-Vis, IR, NMR and Mass spectral behaviour of organic molecules based on the fundamental concepts ii) the proper choice of schemes of a target molecule based on the knowledge of retro synthetic analysis iii) the proper choice of reagent for functional group transformation	PSO4 PSO8	K4
CO5	Interpret the structure of organic molecules from the spectral data of UV-Vis, FTIR, NMR and Mass Construct a synthesis of simple molecules based on the principles of retro synthesis and other reagents used for functional group transformation	PSO3 PSO4 PSO8	K5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 Absorption Spectroscopy and Mass Spectrometry 1.1 UV-Visible Spectroscopy: Calculation of λmax for conjugated dienes & trienes, α,β-unsaturated carbonyl compounds, carboxylic acids & esters using Woodward – Fieser rules - UV visible spectrum of benzene and pyridine; Influence of chromophore and auxochrome; Solvent Effects 1.2 FT-IR spectroscopy: Vibrational frequency of alkanes, alkenes, alkynes, halides, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines and amides, Factors affecting the vibrational group frequency. 1.3 Mass spectrometry: Nitrogen rule - McLafferty rearrangement - Fragmentation pattern of aliphatic and aromatic organic compounds such as alkanes, alkenes, alkynes, halides, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines and amides. Factors affecting the spectrometer. 	12	CO1- CO5	K1 – K5
II	NMR Spectroscopy 2.1 Proton NMR Spectroscopy: Chemical Shift, Factors affecting chemical shift - Spin-spin coupling, spin-spin splitting, coupling constant, Factors affecting coupling constant - geminal coupling, vicinal coupling, long range coupling (Allylic, homoallylic and aromatic coupling), Nuclear Overhauser Effect (NOE) - Chemical equivalence and magnetic equivalence, 1H-NMR absorption of aliphatic and aromatic hydrocarbons, halides, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, nitro compounds, amines and amides – Aromaticity and NMR spectroscopy	12	CO1- CO5	K1 – K5

	 2.2 13C-NMR Spectroscopy: Proton decoupled 13C-NMR spectrum - 13C-NMR chemical shift, Factors affecting 13C-NMR chemical shift - Characteristic chemical shifts of common organic compounds and functional groups and assignment of chemical shifts 2.3 Combined Spectroscopic problems: Elucidation of simple organic compounds (ethyl acetate, propionaldehyde, diethyl ether, butyl amine, pentanols, mono-halogenated anisoles, benzoic acid, aniline, acetanilide, β-naphthol, vanillin) using UV-Vis, FT-IR, NMR and Mass spectral data. 			
III	 Retrosynthetic Analysis 3.1 Protection and deprotection of functional groups like hydroxyl, amino, carbonyl and carboxylic acid group. 3.2 Terminology: target molecule, disconnection, retrosynthetic arrow, synthons, synthetic equivalent, reagent, and functional group transformation - Guidelines for the order of events. 3.3 One group C-X disconnection of propanil, chlorbenside and gardenia perfume – Two group C-X disconnection: 1,1-Difunctionalized 1-aminomethylcyclohexanol, 1,2-difunctionalized proparacaine, 1,3-Difunctionalized 2-(cycloheptyloxy)ethanamine: Cyclisation reaction in 4-phenyl morpholine 3.4 Reversal of polarity (Umpolung) in α-chloro-p-nitroacetamide 3.5 One group C-C disconnection: 1,1 C-C disconnection in 1-Phenylcyclohexyl propionate and 1,2 C-C disconnection in 3-Methylpentanoic acid – Two group C-C disconnection in Diels-Alder reaction and Claisen condensation. 	12	CO1- CO5	K1 – K5
IV	Oxidation and Coupling reagents 4.1 Oxidation reagents: KMnO4/H2SO4, K2Cr2O7/H2SO4, Jones reagent, PCC, Collins reagent, MnO2, OsO4, Pb(OAc)4, Fenton's reagent, Fetizon's Reagent, Moffatt Oxidation, Swern Oxidation, DDQ, Chloranil, NBS, Epoxidation, Dess-Martin Periodinane 4.2 Coupling reagents: EDC, DCC, HBTU, HATU	12	CO1- CO5	K1 – K5
V	Reduction5.1 Catalytic hydrogenation: H2/Raney-Ni, Lindlar's catalyst, Rosenmund catalyst, Adams catalyst, H2/CuCrO45.2 Hydride based-reducing agents: NaBH4, LiAlH4 (mechanism for the reduction of ester and cyanide), DIBAL-H, 9-BBN, L & K- selectride5.3 Partial and complete reduction of alkynes –Birch reduction - Clemmenson reduction, Wolff-Kishner reduction.	12	CO1- CO5	K1 – K5

1. Donald L. Pavia, Gary M. Lampman, George S. Kriz, and James R. Vyvyan, Introduction to Spectroscopy, 4th Edition, Cengage Learning India Private Limited, India, 2015

2. March's Advanced Organic Chemistry, Michael B Smith, Jerry March, 7th Edition, Wiley Students Edition, India, 2013.

3. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, 2nd Edition, Oxford University Press, New Delhi, India, 2019.

References

1. Organic Spectroscopy, William Kemp, 3rd Edition, Palgrave, USA, 2017.

2. Stuart Warren, Organic Synthesis: The Disconnection Approach: Wiley India Pvt. Ltd., India, 2019.

3. Francis A Carey and Richard J Sundberg, Advanced Organic Chemistry Part (A & B) 5th Edition, Springer, New York, USA, 2007

4. Michael B Smith, Organic Synthesis, 3rd Ed.; Elsevier, USA, 2010.

Suggested Reading

1. L D Field, S Sternhell, J R Kalman, Organic Structures from Spectra, 3rd Edition, John Wiley & Sons Ltd, England, 2003

 Jack K. Becconsall, Basic one and two dimensional NMR Spectroscopy, 4th Edition, Wiley – VCH, 2005.
 G C Barret, K W Bentley and G W Rirty Elucidation of Organic structures by Physical and Chemical Methods Part I, Chapter VIII, John Wiley, 1972.

Online Resources (accessed on 28 June 2022)

1. https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_pg/667

2. http://epgp.inflibnet.ac.in/

3. https://www.biocis.universite-paris-saclay.fr/IMG/pdf/Coupling_Reagents.pdf

	M.Sc. Course Articulation Matrix															
Course			Prog	am Oi	itcome	s	11.00.		Program Specific Outcomes							
Outco	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO7	PSO	Level
mes	1	2	3	4	5	6	7	1	2	3	4	5	6		8	
CO 1	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	2	3	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	1	3	3	-	-	-	-	-	2	3	3	-	-	-	-	K3
CO 4		3	3	3	-	-	-	-		2	3	-	-	-	3	K4
CO 5	1	3	3	-	-	-	-	-	1	2	3	-	-	-	3	K5
Wt.	1.7	2.8	3	3	-	-	-	3	2.25	2.33	3	-	-	-	3	
Avg.	5															
Overall Mapping of the Course PO: 2.64																
	PSO: 2.71															

COORDINATION AND BIOINORGANIC CHEMISTRY – II

Course	Code											
Cred	lits	4										
Hours /	Cycle	4										
Categ	gory	Part I	Core		Theo	ry						
Seme	ster	III				-						
Year	of	From 2023-24 o	nwards									
Implem	entatio											
n												
Cou: Objec	rse tives	 To recogniz compounds To identify c To predict in To comprehend 	 To recognize the fundamental concepts and structural aspects of organomet compounds To identify coordination compounds using spectroscopic tools. To predict inorganic structures using spectroscopy and ORD techniques 									
CO#		Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)						
On com	pleting t	he course succe	ssfully, the student will be able	e to								
CO1	Recall	the fundamenta	l concepts and principles of	of (i)	PSO1,	K1						
	Organo	ometallic Chemistr	ry (ii) Inorganic Spectroscopy and	d (iii)	PSO2							
	Redox	and non-redox m	etalloenzymes									
CO2	Explain	n the concepts a	nd principles of (i) Organome	etallic	PSO1,	K2						
	Chemis	stry (11) Inorganic S	pectroscopy and (111) Redox and	non-	PSO2							
<u> </u>	redox f	(i) the series	and aviagiales of Organization	tallia		V2						
005	Chemic	(i) the concepts	talutic reactions: (ii) the principal		PSO2, PSO3	K)						
	inoroar	vic spectroscopy	to understand the structure	e of	PSO4							
	inorgan	nic complexes a	nd (iii) concepts of coording	ation	1001							
	chemis	try to understand	the reactions of metalloenzyems	3								
CO4	Analyse	e (i) the catalytic cy	cles of oranganometallic compo	unds	PSO2,	K4						
	based of	on chemical conc	epts (ii) the spectroscopic behav	viour	PSO3,							
	of coor	dination compou	nds and (iii) the biological proce	esses	PSO4							
	of meta	alloenzymes.										
CO5	Compa	re and evaluate th	e behaviour and chemical proce	esses	PSO2,	K5						
	of coor	dination, organon	netallic and bio-inorganic compo-	ounds	PSO3,							
					PSO4							

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Organometallic compounds – Bonding 1.1 18 and 16 electron rule and stability of organometallic compounds	12	CO1- CO5	K1 – K5
	 1.2 Bonding in metal – olefin complexes, bonding in Ziese's salt, metal-acetylene and metal – allyl complexes; Metal – cyclopentadienyl complexes – Examples and MO approach to bonding in metallocenes; fluxional isomerism 1.3Metal – carbonyl complexes: MO diagram of CO; Structure and bonding – bonding modes, DCD model and MO approach of M-CO bonding, π-acceptor nature of carbonyl group, synergistic effect (stabilization of lower oxidation states of metals) and IR spectroscopy of metal carbonyls. 1.4 Phosphines as Neutral spectator ligands in M-CO complexes – effect of electronic parameter of phosphines on π-back 			
	bonding and IR stretching frequency of CO in carbonyls.			
II	Organometallic chemistry – Reactions and Catalysis 2.1 Oxidative addition, reductive elimination (α and β eliminations), migratory insertion reaction and metathesis reaction 2.2 Organo-metallic catalysis: Hydrogenation of olefins (Wilkinson's catalyst), hydroformylation of olefins using cobalt or rhodium catalysts (oxoprocess), oxidation of olefin (Wacker process), olefin isomerisation, water gas shift reaction, cyclo- oligomerisation of acetylenes using Reppe's catalysts, Monsonto process.	12	CO1- CO5	K1 – K5
III	Inorganic Spectroscopy – Absorption spectroscopy 3.1 Electronic spectroscopy – Ground state Term symbol for d electronic configurations, characteristics of d-d transitions, charge transfer transitions, selection rules for electronic spectra, Orgel correlation diagrams, Racah Parameters, nephelauxetic series and Sugano-Tanabe energy level diagrams. Prediction of transitions in various complexes and calculation of Δo and B (or B') based on the correlation diagrams. 3.2 Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques. 3.3 Application of IR spectroscopy in identification of linkage isomerism and geometrical isomerism.	12	CO1- CO5	K1 – K5
IV	InorganicSpectroscopy–MagneticResonancespectroscopy4.1 Applications of Nuclear Magnetic Resonance (H, C, P andF) spectroscopy in understanding the structure of inorganiccompounds and coordination complexes.	12	CO1- CO5	K1 – K5

	4.2 Applications of ESR to coordination compounds with one								
	hyperfine splitting and Kramer's doublets.								
	4.3 Mossbauer spectroscopy – Mossbauer effect, Recoil energy,								
	Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole								
	splitting and magnetic interactions. Applications of Mössbauer								
	spectra to Fe and Sn compounds.								
V	Bio-inorganic Chemistry – III	12	CO1-	K1 – K5					
	5.1 Redox and non-redox metalloenzymes – Introduction and		CO5						
	examples								
	5.2 Redox metalloenzymes: Fe containing enzymes -								
	Classification and structural features of cytochromes and Fe-S								
	proteins; Copper blue proteins - Classifications and examples,								
	structure and mechanistic action of ascorbic acid oxidase;								
	Peroxide and superoxide scavenger enzymes: Structure and								
	Reactivity of superoxide dismutase, catalase and peroxidase;								
	Molybdenum enzymes – Xanthine oxidase and nitrogenase								
	5.3 Non-redox metalloenzymes: Structure and reactivity of								
	carboxy peptidase and carbonic anhydrase and calmodulin								
Textbo	oks								
1. B D	Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syr	ntheses and	Applicat	ions,					
Universi	ty Press, 2013		2000						
2. G L I	Meissler and D A Tarr, Inorganic Chemistry, 3rd Edition, Pearson Ed	lucation In	c., 2008						
3. J E F	luheey, E A Keiter, R L Keiter and O K Medhi, Inorganic Chemistry	– Principle	es of struc	ture and					
reactivit	y, 4th Edition, Pearson Education Inc., 2006								
4. Asim	K. Das, Bioinorganic Chemistry, Books & Allied Ltd., 2007								
D. KIII	issain Reddy, Diomorganic Chemistry, New Age International, 2007								
1 Rose	tte M. Roat Malone Bioinorganic Chemistry: A Short Course Joh	n Wiley an	d Sone Ir	2007					
2 I Bertini H B Gray S I Lippard and Valentine Bioinorganic Chemistry University Science Books 1004									
Suggested Reading									
1. P. Gütlich, E. Bill, A.X. Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry									
Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011									
2 M G	ielen R Willem and B Wrackmever Advanced Applications of NN	IR to $Oros$	nometall	ic Chemistry					
Iohn W	ilev and Sons Ltd., 1996		mometan	ie Griefinstry,					
Online	Resources (accessed on 28 June 2022)								
1. http://	//epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuh	s6rkivTA=	=						
	1. <u>http://epgp.intlibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrHuhs6rkiy1A==</u>								

2. <u>http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==</u>

	M.Sc. Course Articulation Matrix															
Course			Pro	gram Ou	tcomes					Р	rogram Spe	cific Outcom	nes			Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	2	3	2	-	-	-	-	-	3	2	3	-	-	-	-	K3
CO 4	2	3	2	-	-	-	-	-	3	2	2	-	-	-	-	K4
CO 5	2	3	2	-	-	-	-	-	3	2	2	-	-	-	-	K5
Wt. Avg.	2.4	2.6	2	-	-	-	-	3	3	2	2.3					
											Overall M	apping of t	ne Course	PO: 2.3		
PSO: 2.58																

BIOPHYSICAL CHEMISTRY

Course	Code										
Cred	its	5									
Hours /	Cycle	3									
Categ	gory	Part	NA	Elective		Theory					
Seme	ster	III									
Year	of	From	the acade	mic year 2023 - 24 onwards							
Implem	entatio										
n											
Cou	rse	1. To	understar	nd the physical laws that regulate	e biolo	gical proc	esses.				
Objec	tives	2. To	gain insigl	nts into the intermolecular forces	acting	ın biologi	cal mol	ecules			
CO#				PSO Address	sed	Bloom's Taxonomy Levels (K1 to K5)					
On completing the course successfully, the student will be able to											
CO1	Recall relation	the fun to biol	damental ogy.	concepts of physical chemistr	ry in	PSO1	1	K1			
CO2	Explair in plant	n the ch ts and ai	emistry be nimals.	eyond biological processes occu	rring	PSO1 PSO2 PSO3	, , , ,	K2			
CO3	CO3 Apply the fundamental concepts and theories of physical chemistry in study of physical properties of biological systems							К3			
CO4 Analyse the reactivity of biomolecules in relation to their structure and physical properties						PSO2 PSO3 PSO4	2, 3, 1	K4			
CO5	Evaluat refinen	te the penerts in	erformance the existin	e of biophysical systems and pro g models and systems.	opose	PSO2 PSO3 PSO4	2, 3, 4	К5			
				SYLLABUS							
UNIT			ſ	ONTENT		HOURS	COs	BLOOM'S			

	STEED 00			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
				LEVEL
Ι	1.1 Ionic Activity: Debye-Hückel theory of electrolytes - The	9	CO1-	K1 – K5
	salting-in and salting-out effects		CO5	
	1.2 Membranes: Lipid molecules, lipid bilayers, phase			
	transitions in lipids, bilayers, and membranes, surface tension,			
	surface free energy, vapour pressure and surface tension,			
	biological membranes			

	 1.3 Colligative properties of electrolyte solutions: The Donnan effect, Biological membranes, membrane transport, simple diffusion, facilitated diffusion, active transport 1.4 Electrostatics: Dielectric Constant (x) and Capacitance (C) and Membrane Capacitance 			
II	2.1 Bioenergetics: Standard state in biochemistry ATP, currency of energy, principles of coupled reactions glycolysis; limitations of thermodynamics in biology	9	CO1- CO5	K1 – K5
	2.2 Biochemical applications of thermodynamics: Isothermal titration calorimetry , double strand formation in nucleic acids and ionic effect on protein–nucleic acid interactions			
III	3.1 Biological Oxidation: The Chemiosmotic Theory of Oxidative Phosphorylation - Membrane Potential - The Goldman Equation - The Action Potential	9	CO1- CO5	K1 – K5
	3.2 Role of intermolecular forces in biology: Types of Intermolecular Forces - dipole-dipole interaction, ion-dipole interaction, ion-induced dipole and dipole-induced dipole interactions, London forces. Repulsive and total Interactions. Role of dispersion forces in sickle-cell anaemia.			
	3.3 Protein stability: Hydrophobic interaction, denaturation and protein folding			
IV	4.1 Physical aspects of photosynthesis: Chloroplast, chlorophyll and other pigment molecules, the reaction center, photosystems I and II, dark reactions	9	CO1- CO5	K1 – K5
	4.2 Vision: Structure of rhodopsin and mechanism of vision			
	4.3 Biological effects of radiation: Sunlight and skin cancer, photomedicine			
	4.4 Macromolecules: Methods of determining size, shape, and molar mass (sedimentation, ultracentrifuge, viscosity and electrophoresis) of macromolecules.			
V	 5.1 Structure of synthetic polymers: Configuration & Conformation and The random-walk model 5.2 Enzyme kinetics in multi-substrate systems: Sequential mechanism and non-sequential Mechanism - Enzyme Inhibition – Types; Oxygen Binding to Myoglobin and Hemoglobin (cooperative effect and conformational changes) Hill equation, concerted model and sequential model. 	9	CO1- CO5	K1 – K5

Textbooks

1. K. E. van Holde, W. C. Johnson and P. S. Ho, Principles of physical biochemistry, 2nd edition, Pearson Prentice Hall, New Jersey, 2006.

2. R. Chang, Physical Chemistry for the Biosciences, 5th edition, University Science Books, California, 2005

References

1. D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemistry, 7th edition, W H Freeman & Co., New York, 2017.

 I. Tinoco, Jr., K. Sauer, J. C. Wang, J. D. Puglisi, G. Harbison, D. Rovnyak, Physical Chemistry-Principles and Applications in Biological Sciences, 5th edition, Pearson Education, Inc., New Jersy, 2014.
 M. L. Bender, L. J. Braubacher, Catalysis and Enzyme Action, McGraw-Hill, New York, 1973.

Suggested Reading

1. I. M. Klotz, Energy Changes in Biochemical Reactions, Academic Press, New York, 1967.

2. D. G. Nicholls, S. J. Ferguson, Bioenergetics, Academic Press, New York, 1992.

3. A. Orstan, J. F. Wojcik, Spectroscopic Determination of Protein-Ligand Binding Constants, J. Chem. Edu. 64 (1987) 814.

4. A. F. Huxley, Energetics of Muscle, Chem. Brit. 6 (1970) 477.

5. W. G. Nigh, A Kinetic Investigation of an Enzyme-Catalyzed Reaction, J. Chem. Educ. 53 (1976) 668 6. A. Ault, An Introduction to Enzyme Kinetics, J Chem. Educ. 51 (1974) 381.

Online Resources (accessed on 28 June 2022)

1. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==

2. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==

							N	I.Sc. Course	Articulatio	n Matrix						
Course	Program Outcomes Program Specific Outcomes											nes			Cognitive Level	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	3	3	-	-	-	-	-	2	2	2	-	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K3
CO 4	-	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K4
CO 5	-	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K5
Wt. Avg.	3	3	-	-	-	-	-	2.5	2.75	2.75	3	-	-	-	-	
											Overall Ma	apping of th	ne Course	PO: 3.0		
1														PSO: 2.75		

LABORATORY AND MANUFACTURING PRACTICES

Course Code			
Credits	4		
Hours / Cycle	3		
Category	Part III	Core	Theory
Semester	III		
Year of	From the aca	demic year 2023-24 onwards	
Implementation			
Course Objectives	To acquire kno conduct/design insights into M	wledge of good laboratory practic n, understand procedures and pro- lanufacturing Practices for produc	es and safety procedures for experiment tocols in product development, and gain tion processes.

CO#	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)
On comp	pleting the course successfully, the student will be able to		
CO1	Recall the basic principles, etiquettes and terms involved in handling chemicals in laboratory and industry	PSO3	K1
CO2	Understand the procedure and protocols to be followed in laboratory and industry.	PSO3, PSO6	K2
CO3	Apply the knowledge to provide a safer laboratory environment through proper handling and disposal of hazardous chemicals.	PSO4, PSO7	K3
CO4	Analyse the good laboratory practices with standard protocols and gain insights into the good manufacturing practises	PSO7, PSO8	K4
CO5	Utilize the knowledge gained to become a successful chemist, scientist and an entrepreneur by providing a safer environment in laboratory or industry	PSO7, PSO8	К5

SYLLABUS									
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL					
I	 1.1Good Laboratory Practices (GLP): History of GLP, p rinciples and requirements of GLP (test facility organization and personnel, Quality Assurance Programme (QAP), facilities, apparatus, material and reagents. 1.2 Test systems, test and reference items, standard operating procedures (SOPs), performance of the study, reporting of study results, storage and retention of records and materials 1.3 Material Safety Data Sheet (MSDS) & Safety Data Sheet (SDS) and their significance. 	9	CO1- CO5	K1 – K5					
II	 2.1 General safety and operational rules - Lab safety protocols: labelling and storage and safety protocols - Disposal of chemicals/reagents/unknown chemicals, spilling of chemicals, handling hazardous chemicals and waste management. 2.2 Guidelines for handling (i) Mercury Waste; (ii) Ethidium Bromide; (iii) Bis-acrylamide; (iv) Phenol/ Chloroform; (v) Cryogenic liquids; (vi) Dry Ice; (vii) Radioactive Material; (ix) corrosive materials. 	9	CO1- CO5	K1 – K5					
III	3.1 Good Manufacturing Practices (GMP) - Principles and requirements (location and surroundings, water system, warehousing area, production area, ancillary areas, quality control area, personnel, raw materials, equipment,	9	CO1- CO5	K1 – K5					

	documentation and records, labels and other printed			
	materials)			
	3.2 Quality Assurance, Quality Control system, product			
	containers and closures, master formula records, packing			
	records, product recalls, complaints and adverse reactions,			
	aseptic areas, garments			
	5.5 Installation of a pilot plant - concept, significance, design,			
	layout of pilot plant scale up study, operations, large scale			
	manufacturing techniques (formula, equipment, process,			
	stability and quarty control) of sonds, inquids, serifisond and			
IV	4.1 Laboratory safety symbols and their significances. The	0	004	K1 K5
1 V	4.1 Laboratory safety symbols and their significances - The	2	CO1-	$\mathbf{K} \mathbf{I} = \mathbf{K} \mathbf{J}$
	4.2 Case Studies: (i) An Accident with Acetic Acid and		005	
	Bromine: (ii) Injury and Fire Resulting from Benzene Vapor			
	Explosion in a Chemistry Laboratory: (iii) Mercury Spill			
	Decontamination Incident at the Rockefeller University: (iv)			
	Texas Tech University – Laboratory Explosion: (v)			
	Preventing Incidents from Flammable Chemicals in			
	Educational Demonstration; (vi) A two-liter pyridine spill in			
	an undergraduate laboratory			
	4.3 General Recommendations to avoid accidents in			
	laboratory			
V	5.1 Introduction to drug designing - stages of drug designing	9	CO1-	K1 – K5
	5.2 Clinical trials: Designing clinical trials, selection criteria -		CO5	
	Phases in clinical trials Phase 0, I, II, III and IV			
	5.3 Investigational New Drugs Application (IND) & New			
	Drug Application (NDA): requirements, informational			
	content, procedures and protocols – Scale Up Post Approval			
	Changes (SUPAC) - Post marketing surveillance - Product			
	registration guidelines.			
Textbo	oks		D I'	
1. Jurg F 2005	2. Seiler, Good Laboratory Practice – the Why and the How, 2nd Ed	lition, Sprin	iger Berlin	, Heidelberg,
2. Prade	ep Deshmukh, Principles of Good Laboratory Practice. Adhyvan I	Books. Indi	a. 2020.	
Referer	nces		,	
1. Good	Laboratory Practice. By European Chemical Industry Ecology and	d Toxicolog	gy Centre	(ECETOC),
Monogr	aph No. 1, Brussels October1979.	c c		
2. Good	Laboratory Practice. by G.E. Paget, MTP Press Limited, Lancaste	er1979		
Suggest	ted Reading			
1. Good	Laboratory Practice. Part 1. An introduction, J. Chem. Educ. 2013	3, 90, 854-	857.	
2. Good	Laboratory Practice. Part 2. Recording and Retaining Raw Data, J	. Chem. Ed	luc. 2013,	90, 858-861
3. Good	Laboratory Practice. Part 3. Implementing Good Laboratory Prac	tice in the	Analytical	Lab, J. Chem.
Educ. 20)13, 90, 862–865.			
01	$\mathbf{D}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} = $			
	Kesources (accessed on 28 June 2022)	+0/ 201-0/ 20		2 E 0 / 2 C 0 / 2 0 -
1.nttps:/	/www.pharmaguidenne.com/2021/09/supac.ntml#:~:text=What	1702U1\$%02U	SUPAC%	эг,702C702Ueq

uipment%2C%20site%20of%20manufacturing.

2. https://www.cancer.org/treatment/treatments-and-side-effects/clinical-trials/what-you-need-toknow/phases-of-clinical-trials.html 3. <u>https://thescholarship.ecu.edu/handle/10342/7642</u>

M.Sc. Course Articulation Matrix

Course Outcomes			Pro	gram Outc	omes					Pro	gram Spec	cific Outco	omes			Cognitive Level
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	-	3	-	-	-	-	-	K1
CO 2	-	3	-	3	-	-	-	-	-	3	-	-	3	-	-	K2
CO 3	-	3	-	3	-	-	-	-	-	-	3	-	-	3	-	K3
CO 4	-	-	-	3	-	-	3	-	-	-	-	-	-	3	3	K4
CO 5	-	-	-	3	-	-	3	-	-	-	-	-	-	3	3	K5
Wt. Avg.	-	3	-	3	-	-	3	-	-	3	3	-	3	3	3	
Overall Mapping of the Course PO: 3 PSO: 3																

INTRODUCTION TO CHEMINFORMATICS

Course	e Code									
Cre	dits	4								
Hours	/ Cycle	3								
Cate	gory	Part III	Core		Theo	ry				
Sem	ester	III								
Yea	ur of	From the aca	demic year 2023-24 onwards							
Implementation										
Cou Objec	ırse ctives	designing molecules while developing a comprehensive understanding of the significant of quantum chemistry in drug design processes, and demonstrating effective prediction of molecular properties using cheminformatics tools.								
CO#		Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comp	pleting the	e course succes	ssfully, the student will be able	e to						
CO1	Recall the	e basic principl	es of chemistry and its role in c	drug	PSO1,	K1				
	designing				PSO2,					
					PSO5					
CO2	Understa	nd the signific	cance of file formats involved	l in	PSO1,	K2				
	cheminfo	rmatics techniq		PSO3,						
					PSO5					

CO3	Apply the knowledge to predict the molecular properties of molecules using online/offline tools	PSO5, PSO7	K3
CO4	Analyse the outputs from various property calculators to gain insights into the drug design strategies.	PSO3, PSO5, PSO7	K4
CO5	Use online cheminformatics tools to evaluate, screen and tune the drug molecules	PSO2, PSO5, PSO8	K5

	SYLLABUS													
UNIT	CONTENT	HOURS	COs	BLOOM'S										
				LEVEL										
Ι	1.1 Molecular representations - 2D to 3D conversions –	9	CO1	K1 – K5										
	visualization software programs - Marvin Sketch, ACD Labs		-											
	(ChemSketch)		CO5											
	1.2 Different file formats and their construction - (SMILES, MDL													
	number, Cartesian coordinates, Z-matrix, PDB file, CIF, Mol)													
	1.3 Online molecular builders - Similarity and Fingerprint Analysis													
	- Molecular Similarity - Exact Structure Search - Substructure													
	Search													
II	2.1 Introduction to Databases - Types of Databases - Database	9	CO1	K1 – K5										
	Management System – database creation and management - Data		-											
	storage & retrieval techniques		CO5											
	2.2 Chemical Structure Databases - Online cheminformatics													
	databases - Chemspider - MOLBASE - OCHEM – Cambridge													
	2.2 Protein Data Centre (CCDC)													
	2.5 Protein Data Bank (PDB) – PubCnem – Drug Bank -													
TIT	2.1 Structure property relationships Descriptors Dringiple and	0	<u>CO1</u>	V1 V5										
111	Applications of OSAR	9	COI	KI = KJ										
	3.2 Introduction to computational chemistry - Geometry		- CO5											
	Optimization techniques – Methods (Molecular mechanics.		005											
	molecular dynamics, semi-empirical and DFT – basic concepts													
	only) – Potential Energy Surface - Single point energy - Frequency													
	calculations – Conformational Analysis													
	3.3 Molecular property calculations - molecular orbitals (HOMO													
	and LUMO) – Electrostatic potential maps – software programs													
	for DFT calculations													
IV	4.1 Introduction to drug designing - strategies & challenges –	9	CO1	K1 – K5										
	types of drug designing (ligand-based drug designing and		-											
	4.2 Virtual screening – drug likeness - Bioavailability - ADMET		CO5											
	(absorption distribution metabolism excretion and toxicity)													
	properties & their calculations – Lipinski's rule													
	4.3 Online tools - Molecular viewers (online/offline) – Inhibitors													
	and drugs.													

V	5.1 Introduction to Molecular docking - principles of docking -	9	CO1	K1 – K5							
	Types of docking - preparation of protein - preparation of ligand		-								
	5.2 Molecular docking algorithms – binding energy and molecular		CO5								
	docking scores - online docking tools - Post docking analysis										
	5.3 Types of interactions - hydrogen bonding, electrostatic										
	interactions, halogen bonding, repulsive interactions, aromatic π ,										
	cation- π and anion- π interactions										
Textboo	ks										
1. Muthul	xumarasamy Karthikeyan & Renu Vyas, Practical Chemoinformatics, 1st	Edition, Sp	ringer, 2	2014.							
2. Andrew	R. Leach & Valerie J. Gillet, An Introduction to Chemoinformatics, 1st	Edition, Sp	oringer,	2004							
Reference	es										
1. Thoma	s Engel, Johann Gasteiger, Applied Chemoinformatics: Achievements an	nd Future (Opportu	nities, 1st							
Edition, V	Viley Publication, 2018.										
2. Johann	2. Johann Gasteiger, Handbook of Chemoinformatics: From Data to Knowledge in 4 Volumes, 1st Edition, Wiley										
Publicatio	Publication, 2003.										
Suggested Reading											
1. Jürgen Bajorath, Chemoinformatics for Drug Discovery, Wiley, 1st Edition, 20013.											
2. Jean-Lo	2. Jean-Loup Faulon and Andreas Bender, Handbook of Chemoinformatics Algorithms, 1st Edition, Chapman and										
Hall/CRC	С, 2010.			-							

Hall/CRC, 2010.

M.Sc. Course Articulation Matrix

Course Outcomes			Progra	am Outco	omes			Program Specific Outcomes								Cognitive Level
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3	-	-	-	3	-	-	3	3	-	-	3	-	-	-	K1
CO 2	3	3	-	-	3	-	-	3	-	3	-	3	-	-	-	K2
CO 3	-	-	-	3	3	-	-	-	-	-	-	3	-	3	-	К3
CO 4	-	3	-	3	3	-	-	-	-	3	-	3	-	3	-	K4
CO 5	3	-	-	-	3	-	3	-	3	-	-	3	-	-	3	K5
Wt. Avg.	3	-	-	3	3	-	3		3	3	3	-	3	-	3	
Overall Mapping of the Course PO: 3 PSO: 3																

ORGANIC CHEMISTRY PRACTICAL-II

Course (Code											
Credite		4										
Hours /	Cycle	4										
Categor		Part III	Core	T	Practical							
Semester	, r	3 & 4	Cole	•	Tactical							
Vear of	L	From the aca	demic vea	r 2024-25 onwards								
Impleme	ntation	1 Iom the aca										
Course		To apply the concepts of quantitative estimation, identification and separation.										
Objectiv	es	extraction and structural elucidation of organic compounds and mixtures										
CO#	Course (PSO Addressed	Bloom's Taxonomy Levels								
On com	pleting the	e course succe	ssfully, the	student will be able	to		1					
CO1	Recall i) the gener compount technique spectral d	general tabulati ral principles in nd using chroma es iii) general mo lata	tions ii) organic on using	PSO1 PSO2	K1							
CO2	Compile estimation	the repor n/separation/ex l way	rt of xtraction/s _j	the quantitative pectral interpretation	organic in an	PSO1 PSO2	K2					
CO3	i) Tabula manner analysis/s ii) utilize	te/present the or related separation/extra the spectral data	PSO3 PSO4	К3								
CO4	i) carry o estimation (iv) Inter spectral d	ut calculation a ns/separations/ pret the structulata during regu	organic various	PSO4 PSO5	K4							
CO5	i) carry out calculation and arrive at the result related to organicPSO4K5estimations/separations/extractions during ICAPSO5Interpret the structure of organic compounds using variousPSO6spectral data during ICAPSO7PSO7											

CONTENT

I. Estimations:

- 1. Phenol (bromination)
- 2. Aniline (bromination)
- 3. Methyl ketone (iodometry)
- 4. Glucose (redox)
- 5. Acetyl group (hydrolysis)
- 6. Methoxy group
- 7. Degree of unsaturation
- 8. Aromatic nitro groups (reduction)
- 9. Glycine (acidimetry)
- 10. Iodine value of an oil
- 11. Saponification number of an oil
- 12. Ascorbic acid (Iodometry)

II. Identification and Separation of components of an organic mixture (Any 4):

- 1. Thin layer chromatography (Monitoring the reaction progress)
- 2. Preparative Thin layer Chromatography
- 3. Column Chromatography (Purification of organic mixtures)
- 4. Gas Chromatography (Monitoring the reaction progress)

III. Project Based Learning:

Extraction/separation of:

- 1. Casein from milk
- 2. Caffeine from tea leaves
- 3. Vitamin C from fruits
- 4. Lycopene from tomatoes
- 5. Piperine from Pepper
- 6. Curcumin from Turmeric
- 7. Pigment from Red Chili

IV. Structural Elucidation using spectral data: (Any 10):

Phenol, Anisole, Benzoic acid, Aniline, Acetanilide, Benzaldehyde, Cinnamic acid, 1,3,5-

Trimethylbenzene, n-Propylamine, p-Methoxy benzyl alcohol, Benzyl bromide, Phenylacetone, Pyridine, 4-Picoline, Cinnamaldehyde.

Textbooks

1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry – Lab manual, S. Viswanathan Co. Pvt. Ltd, 1998.

2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 1987 References

Vogel's Text Book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England, 1984.
 V K Ahluwalia, Sunitha Dhingra, Adarsh Gulati, College Practical Chemistry, University Press, India,

2008.

3. Jag Mohan, Organic Analytical Chemistry, Narosa Publishing House, India, 2003

4. <u>Robert M. Silverstein</u>, <u>Francis X. Webster</u>, <u>David J. Kiemle</u>, Spectrometric Identification of Organic Compounds, 8ed, Wiley, 2022

References

1.Vogel's elementary practical organic chemistry : quantitative organic analysis part 3, Pearson India, 2010.

 Donald L. Pavia, Gary M. Lampman, George A. Kriz and James R. Vyvyan. Introduction to spectroscopy, 5e, Cengage India Private Ltd, 2015

Online Resources (accessed on 30th April 2024)

1. <u>https://edu.rsc.org/practical/preparation-of-an-organic-liquid-practical-videos-16-18-students/4014326.article</u>

							M.Sc. C	ourse Ar	ticulation	Matrix						
Course			Program	mme Ou	tcomes					Prog	gramme S	pecific O	utcomes			Cognitive
Outcomes																Level
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8														
CO 1	3	3	-	-	-	-	-	3	3		-	-	-	-	-	K1
CO 2	3	3	-	-	-	-	-	-3	3		-	-	-	-	-	K2
CO 3	-	2	3	1	-	-	-	-	-	2	3	-		-	-	K3
CO 4	-	2	3		-	-	-	-	-	-	-3	2		-	-	K4
CO 5	-	2	3	3	2	-	-	-	-	-	3	1	3	3	3	K5
Wt. Avg.	3	2.4	3	2	2	-	-	3	3	2	3	1.5	3	3	3	-
Overall Mapping of the Course PO: 2.48																
PSO: 2.69																

INORGANIC CHEMISTRY PRACTICAL II

Course Co	ode												
Credits		4											
Hours / C	Cycle	4											
Category		Part III	Core	Prac	tical								
Semester		3 & 4	& 4										
Year	of	From the academic year 2023 - 24 onwards											
Implement	ntation												
Course Objective	S	 To apply ph metal ions b To acquire 2 communicat 	 To apply physical and inorganic chemistry concepts in quantitative estimation of metal ions by fundamental analytical techniques To acquire 21st century skills such as critical, creative thinking, collaboration and communication as well as bench skills 										
CO#		Cou	arse Outcomes		PSO Addressed	Bloom's Taxonomy Levels							
On comp	leting th	e course succes	sfully, the student will be able	to									
CO1	Recall gravime	the basic princ etric methods of c	iples involved in volumetric quantitative analysis.	and	PSO1	K1							
CO2	Unders gravime	tand the basic pretric methods of c	rinciples involved in volumetric quantitative analysis.	and	PSO3, PSO4, PSO6	K2							
CO3	Apply method with hig	the basic princip ls for quantitativ gh precision.	ples of volumetric and graving e estimation of the given mate	netric erials,	PSO3 PSO4, PSO6	K3							

CO4	Separate the components of the mixture and analyse individual	PSO3	K4
	metal components present in the mixture by using volumetric	PSO4,	
	and gravimetric methods	PSO6	
CO5	(i) Summarize their findings in writing in a clear and concise	PSO3, PSO7	K5
	manner and (ii) Draft a mini project proposal including		
	hypothesis and design of experiments		

CONTENTS

I. Double Burette method:

- Estimation of Iron by cerimetry a.
- b. Estimation of Zinc by complexometric method

II. Single Burette method:

- Estimation of nitrite a.
- Estimation of calcium b.
- Estimation of hardness of water c.
- III. Quantitative separation and analysis (one by volumetric and one by gravimetric method) of any two the following artificial mixtures:

d. Zn and Cu. a. Cu and Ni, b. Cu and Fe, c. Fe and Ni &

IV. Project Based Learning:

- Synthesis of a metal complex and determination of its composition a.
- Estimation of the components of an alloy by green method b.
- c. Estimation of an inorganic component in a real sample by spectrophotometric method
- Separation of inorganic cations by paper chromatography d.
- Synthesis of a photo-sensitive complex and study of its application e.

V. Analysis of the following (any TWO):

a. Brass, b. Bronze, c. Solder & d. Pyrolusite

Textbooks

1. Shriniwas L Kelkar, Dilip D Dhavale and Prabodh G Pol, Microscale Experiments in Chemistry - The Need of the New Millenium, Resonance (2001) 14-22

2. G H Jeffery, J Bassett, J Mendham and R C Denney, Vogel's textbook of Quantitative Chemical Analysis, 5th Edition, Longman Group Limited, London, 1989

3. S K Agarwala and Keemti Lal, Advanced Inorganic Analysis, 10th Edition, Pragati Prakashan, Uttar Pradesh, 2008

References

1. Anil J Elias, A Collection of Interesting General Chemistry Experiments, Sangam Books Ltd, 2002

Suggested Reading

1. Gurdeep Raj, Advanced Practical Inorganic Chemistry, 27th Edition, Goel Publishing House, Uttar Pradesh, 2016

Online Resources (accessed on 28 June 2022)

1. https://www.ias.ac.in/article/fulltext/reso/006/02/0014-0022

2. https://www.youtube.com/watch?v=uNhHotinlOg

M.Sc. Course Articulation Matrix																
Course			Pro	gram Ou	tcomes					Pi	rogram Spec	cific Outco	mes			Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	2	2	-	-	-	-	-	2	-	2	-	-	-	-	-	K1
CO 2	2	2	-	-	-	-	-	2	-	2	-	-	-	-	-	K2
CO 3	2	2	-	2	-	-	-	2	-	2	-	-	3	-	-	K3
CO 4	2	2	-	2	-	-	-	2	-	2	-	-	3	-	2	K4
CO 5	2	2	-	3	-	-	-	2	-	2	-	-	2	-	3	K5
Wt. Avg.	2	2	-	2.3	-	-	-	2	-	2	-	-	2.67	-	2.5	
Overall Mapping of the Course PO: 2.1																
											PSO: 2.29	9				

PHYSICAL CHEMISTRY PRACTICAL II

Course Code												
Credits		4										
Hours /	Cycle	4										
Category	7	Part III	Core	Prac	tical							
Semester	ſ	3 & 4										
Year	of	From the acade	From the academic year 2023 - 24 onwards									
Impleme	entatio											
n												
Course		To apply the	theoretical concepts of phys	ical c	hemistry in	determining and						
Objectiv	es	understanding o	f various physical parameters									
	н				-	Bloom's						
CO#	To app	bly the theoretica	l concepts of physical chemistr	PSO	Taxonomy							
	determ	ining and understa	anding various physical paramete	Addressed	Levels (K1 to KE)							
						(KI to K5)						
On comp	pleting t	the course succes	ssfully, the student will be able	e to								
CO1	To rec	all the basic print	ciples of physical chemistry three	augh	PSO1	K1						
001	hands of	on experience	cipies of physical elicinistry this	1001	111							
000	D				Deco	17.0						
CO2	Demor	istrate the applicat	ion of conductometry, potention	netry	PSO3,	K2						
	photoc	colorimetry for	determination of various phy	PSO4,								
<u>CO</u> 2	parame	eters.	onto	PSO6	V2							
COS	to	ise of enil, conduc	cance and absorbance measurem	PSUS KS								
		study/verify/com	stion and separation of metal ion	PSO4,								
CO4	Analyse	e the experiment	hout	PSO3	K4							
	various	chemical proce	asses in light of physical chem	istry								
	princip	les.	nstry	PSO6								
CO5	Conclu	ide and summarize	e their findings in a clear and con	ncise	PSO3. PSO7	К5						
	manner	r	,									
1					1							

CONTENT

I. Experiments

- 1. Verification of Job's continuous variation method for complex formation
- 2. Determination of critical micelle concentration by conductometry method
- 3. Comparison of acid strength Hydrolysis of methyl ethanoate
- 4. Determination of energy of activation for hydrolysis of methyl ethanoate.
- 5. Study of kinetics of iodination of acetone
- 6. Evaluation of rate constant for ester hydrolysis using Guggenheim's method
- 7. Potentiometric Titration Strong acid vs Strong base
- 8. Potentiometric Titration Mixture of strong acid and weak acid vs Strong base
- 9. Potentiometric Titration Mixture of halides vs silver nitrate
- 10. Potentiometric Titration Ferrous ion vs Potassium dichromate
- 11. Determination of thermodynamic parameters by potentiometry
- 12. Determination of hydrolysis constant of a weak salt from emf measurements.
- 13. Study of kinetics of hydrolysis of ethyl ethanoate by NaOH using conductance method
- 14. Determination of concentration of sodium ions by flame photometry.
- 15. Electrogravimetry Separation of copper and nickel
- 16. Study of kinetics of oxidation of alcohols by photometry.
- 17. Verification of Freundlich adsorption isotherm.
- 18. Study of effect of ionic strength on the reaction between persulphate and iodide

Textbooks

- 2. A. Findlay, J.A. Kitchener, Findlay's Practical Chemistry, 8th Edition, Prentice Hall Press,1954.
- **3.** B. Viswanathan and P.S. Raghavan, Practical Physical Chemistry, Viva Books, 2012.

References

2. R.C. Das and B. Behera, Experimental Physical Chemistry, McGraw-Hill Education, 1984.

Suggested Reading

1. Farrington Daniels, Experimental Physical Chemistry, 7th Edition, McGraw-Hill Inc., US, 1970.

M.Sc. Course Articulation Matrix																
Course	Program Outcomes							Program Specific Outcomes								Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	3	-	3	-	-	-	-	-	3	3	-	3	-	-	K2
CO 3	-	3	-	3	-	-	-	-	-	3	3	-	3	-	-	K3
CO 4	-	3	-	3	-	-	-	-	-	3	3	-	3	-	-	K4
CO 5	-	3	-	3	-	-	-	-	-	3	-	-	-	3	-	K5
Wt. Avg.	3	3	-	3	-	-	-	3	-	3	3	-	3	3	-	
Overall Mapping of the Course PO: 3.0																
	PSO: 3.0															

PROJECT

Course Code												
Credi	its	6										
Hours / Cycle		5										
Categ	ory	Part	NA	Core	Pro	ect						
Semes	ster	III & I	III & IV									
Year	of	From	From the academic year 2023-24 onwards									
Implemen	ntation	4 7		1	1 1 1 1 .	1						
Course Objectives		1. 10 und 2. To 3. To que	 To expose students to research in chemistry thereby developing a deeper understanding of the discipline To develop critical thinking, creative thinking, and communication skills To analyse the data, spectra and research findings to answer the research question(s) 									
CO#			Cou	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)							
On compl	eting th	e cours	e success	fully, the student will be able	to							
CO1	Critical researc	ly analyz h proble	ze literatur em.	e to identify the knowledge gap ir	n the PSO6	K1						
CO2	Genera hypoth	te hypo esis.	thesis and	e the PSO 4, PSO 5, PSO 6, PSO 7	K2							
CO3	Apply 1	the basic	concepts	PSO3, PSO4	K3							
CO4	Use do and int	omain sp erpret da	pecific tec ata	llyze PSO 6	K4							
CO5	Present and ver	t the res bal	ults as a s	ystematic scientific report in wr	itten PSO 6	K5						

Description

- The research project in M.Sc. program will enable students to gain personal observation and knowledge or experience on a particular field of interest. This is a perfect platform to learn, unlearn and relearn new concepts and a way to move forward to add new skills.
- Research projects / review work develop and enhance the research attitude and aptitude of the students as they attempt to solve a research problem.
- A year-long project helps students to dig deep into the scientific literature to identify the research gap, to rationalize the research questions, frame hypothesis, design experiments and to validate the hypothesis. During the course of project, students will be prepared to work/learn independently.

- The execution of the research project will depict the peak of the learning process, whereby students apply all the knowledge that they have learnt from various courses including scientific research methodology.
- The department encourages students to present their project works in national/international conferences and publish them in reputed peer-reviewed research journals. Upon completion of a M.Sc. dissertation, students will be able to develop a skillset for approaching a research problem, including critical thinking, literature review, design & plan of experiments, interpretation of the results, scholarly writing, communication, time management, and presentation skills.
- The students are assessed throughout the year through periodic presentations and finally through dissertation submission and viva-voce examination. Overall, this project experience will help students to choose their career in academia or research or industry.

r																
M.Sc. Course Articulation Matrix																
Course	Program Outcomes									Р	rogram Spe	cific Outcon	nes			Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	2	3	1	-	-	-	-	-	3	2	3	-	-	-	-	K3
CO 4	2	3	1	-	-	-	-	-	3	-	2	-	-	-	-	K4
CO 5	2	3	2	-	-	-	-	-	3	2	2	-	-	-	-	K5
Wt. Avg.	2.4	2.6	1.3	-	-	-	-	3	3	2	2.3					
	Overall Mapping of the Course PO: 2.1															
	PSO: 2.58															

ELECTROCHEMISTRY AND SPECTROSCOPY

Coι	urse Code											
(Credits	4										
Hou	urs / Cycle	5										
Category		Part	NA	Theory	Theory							
Se	Semester				2							
Y	Year of	From	From the academic year 2023 - 24 onwards									
Imple	ementation											
Course Objectives		 To give a clear approach to conceptualize ionic solvation and various interactions in electrolytes. To comprehend the phenomena of electrochemistry occurring at the surface of electrodes. To gain insights on the applications of electrochemistry to corrosion, electroplating and batteries. To understand the physical principles of microwave, infrared and Raman Spectroscopy. 										
CO #				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)							
On co	On completing the course successfully, the student will be able to											
CO1	Recall the b spectroscopy	oasic pr y	inciples ar	nd fundamental laws electroch	nemistry and	PSO1	K1					
CO2	Explain (i) I Structure an devices (iv) NMR spectr	Explain (i) Interaction, transport and association of ions in solution (ii)PSO2,K2Structure and reactions at electrodes (iii) Functioning of electrochemicalPSO3,PSO3,devices (iv) Principles of electronic, rotational, vibrational, Raman andPSO4										
CO3	Apply the principles of electrochemistry to identify (i) non-ideal behaviorPSO2,K3of electrolytes and properties of different species in solution (ii)PSO3,PSO4relationship between electrical potential and chemical reactions atPSO4electrodes (iii)dynamics of electrochemical devices (iv)possible											
CO4	Analyse (i) different types of ion-solvent interactions and predictPSO2,K4properties of solutions (ii) relationship between electrical potential and chemical reactions at electrodes (iii) provide information about the electronic structure of atoms and molecules (iv) selection rules, intensity of spectral lines, and other physical aspects of microwave, infrared, NMR and Raman spectroscopyPSO3, PSO4											
CO5	and Kaman spectroscopyPSO2,Compare different models used to explain (i) interaction, transport and association of ions in solution (ii) Structure and reactivity at electrodesPSO3,(iii) operating principles of electrochemical power sourcesPSO4											
Evaluate the spectra of polyatomic molecules using different spectroscopic techniques

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	1.1 Ion-solvent interaction: Born's treatment of ion solvent interaction - its validity and modification. A brief account of the ion-dipole and ion-quadrupole models of ion solvent interactions.	15	CO1 - CO5	K1 – K5
	1.2 Ion-Ion interactions and activity coefficients: Debye - Hückel ionic atmosphere model of the strong electrolytes - derivation of Debye - Hückel limiting law - validity of the equation- extension of Debye - Hückel equation - Significance of the activity coefficient of electrolytes.			
	1.3 Ion-transport in solutions: Theory of strong electrolytes for electrolytic conduction- Debye Hückel ion atmosphere model - Derivation of the Onsager equation - validity of the equation - modification of the Onsager equation.			
	1.4 Ion Association: Bjerrum treatment of association - Bjerrum ion association constant - factors influencing ion-association - effect of ion- association on conductivity and activity coefficient of electrolytes in solution.			
II	2.1 Dynamic electrochemistry: The electrified interface - IHP, OHP	15	CO1	K1 – K5
	2.2 Thermodynamics of electrified interfaces- Electrocapillary measurements - Lipmann potential - polarisable and non-polarisable interfaces - Billiter potential.		- CO5	
	2.3 Structure of electrified interfaces- Discussion of various models - Helmholtz- Perrin, Gouy Chapmann and Stern Models - derivations of equations and their validity. Electrokinetic phenomenona - electrophoresis, electroosmosis, streaming potential, and sedimentation potential. Electrokinetic effects - concepts and derivations of equations - Zeta potential and its determination- Tsilius method of separation of proteins - stability of colloids.			
	2.4 Electrodics: Charge transfer across the electrified interface - its chemical and electrical implications - the basic electrodic equation- the Butler - Volmer equation- derivation and its significance-special cases of Butler-Volmer equation. Tafel equation and plots Concept of overpotential - types of overpotential			

	2.5 Hydrogen overpotential- factors influencing the hydrogen overpotential and the mechanism.			
III	3.1 Corrosion: Basics of corrosion. EMF and Galvanic series. Classification of corrosion – corrosion kinetics – Pourbaix diagram for Fe- H2O system – passivity. Corrosion control methods- General classification of corrosion control methods – Designing aspects in corrosion control – corrosion inhibitors – Electrochemical methods of protection such as anodic and cathodic protection.	15	CO1 - CO5	K1 – K5
	3.2 Electroplating Principles of electroplating – Metal deposition from solutions of simple salts and complex salts – measurement of current density, throwing power and current efficiency of electroplating bath – surface preparation for electroplating. Electroplating of nickel and copper			
	3.3 Electrochemical power sources: Principle of electrochemical energy conversion, Classification of batteries - primary and secondary systems. Basic electrochemical reactions and performance of primary and secondary systems - Fuel cells - Introduction - Types of fuel cells, construction and principle of operations and application.			
IV	4.1 Electronic Spectroscopy of Atoms: Hydrogen atom spectrum – Electronic angular momentum - Fine structure of Hydrogen atom spectrum – Many electron atoms – Spectrum of lithium and hydrogen like atoms- Angular momentum of many electron atoms - term symbols - Spectrum of helium and alkaline earths – Equivalent and nonequivalent electrons - Zeeman effect	15	CO1 - CO5	K1 – K5
	4.2 Electronic spectroscopy of molecules: Electronic spectra of diatomic molecules - Frank Condon Principle -Dissociation and predissociation – Rotational fine structure of Electronic – Vibration - Electronic spectrum of polyatomic molecules.			
	4.3 Nuclear Magnetic Resonance Spectroscopy: Nuclear spin – Larmor frequency – Population of nuclear spin states – Relaxation processes			
V	5.1 Microwave Spectroscopy: Classification of molecules according to their moment of inertia – Rotational spectra of rigid diatomic molecule – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotor and its spectrum – linear polyatomic molecules.	15	CO1 - CO5	K1 – K5
	5.2 Infra-red Spectroscopy: Simple harmonic oscillator and the anharmonic oscillator models – transitions between vibrational levels – The diatomic vibrating rotator – Breakdown of Born- Oppenheimer approximation – Vibrations of polyatomic			

molecules normal modes of vibrations - CO2, H2O and	
acetylene – Influence of rotation on the spectra of polyatomic	
linear molecules	
5.3 Raman Spectroscopy: Quantum and classical theory of	
Raman effect – Pure rotational Raman of linear molecules –	
Vibrational Raman Spectra – Raman activity of vibrations –	
Vibrational Raman spectra – rotational fine structure	
Textbooks	
1. J. O. M. Bockris, A. K. N. Reddy, M. E. G. Aldeco, Modern Electrochemistry, 1, 2A and 2B, F	Plenum
Press, New York, 1998.	
2. C. N. Banwell and E.McCash, Fundamentals of molecular spectroscopy, 4th Edition Tata McC	Graw Hill,
India, 1994.	
3. D. R. Crow, Principles and Applications of Electrochemistry, Springer, US, 1974.	
References	
1. C. M. A. Brett, and A. M. Oliveira Brett, Electrochemistry: Principles, Methods, and Application	ons,
Oxford University Press, New York, 1993	
2. P. H. Rieger, Electrochemistry, Prentice Hall, Englewood Cliffs, NJ, 1987.	
3. D. T. Sawyer, A. Sobkowiak, and I. L. Roberts, Ir., Electrochemistry for Chemists, John Wiley	& Sons.
New York, 1995.	,
4. Barrow, G. M., Molecular Spectroscopy, McGraw-Hill, New York, 1962.	
5 B P Straughan and S Walker Eds Spectroscopy Vols 1 2 and 3 John Wiley & Sons New	Vork
1976	101K,
Suggested Reading	
1 P.I. Delahay Double Laver and Electrode Kinetics Interscience Publishers New York 1965	
2 A I Bard and I. R. Faulkner, Electrochemical Methods Wiley, New York, 2000	
3 A G Briggs Vibrational Frequencies of Sulfur Dioxide I Chem Edu 47 (1970) 391	
4 F E Stafford C W Holt and G L Paulson Vibration-Rotation Spectrum of HCl I Chem 1	Edu 40
(1963) 245 5 H H R Schor and E L Teixeira The Fundamental Rotational-Vibrational Band of	of CO an
NO I Chem Edu 71 (1994) 771	01 00 แก
Online Resources (accessed on 28 June 2022)	
6. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrEfuhs6rkivTA==	
7 http://epop inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrEfuhs6rkjvTA==	
(intep://opppinitionesiaein/fiome/ itewoubjeet.eata 1500 (outinitifiuitorikiy171	

	M.Sc. Course Articulation Matrix															
Course	urse Program Outcomes Program Specific Outcomes										Cognitive Level					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	_
CO 1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	2	2	2	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K3
CO 4	-	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K4
CO 5	-	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K5
Wt. Avg.	3	3	-	-	-	-	-	3	2.75	2.75	2.75	-	-	-	-	
Overall Mapping of the Course PO: 2.81																
														PSO: 2.75		

SCIENTIFIC RESEARCH METHODOLOGY

Course	e Code									
Cre	dits	4								
Hours	/ Cycle	4	4							
Cate	gory	NA	Core		Theorem	ry				
Sem	ester	IV								
Yea	r of	From the aca	From the academic year 2023 - 24 onwards							
Implem	entation									
Cou Obje	irse ctives	 To learn the To impart sk To learn and To understand 	basics of research, scientific literatu ills to conduct research and stay aw select the appropriate technique fo ad the art of scientific writing and p	re surv vay fror or the d oublicat	rey, ethics and ph n scientific misco ata analysis ion	ilosophy onduct				
CO#		Cou		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On com	pleting the	e course succes	ssfully, the student will be able	e to						
CO1	Recall (i) plagiarism literature, research a	the definitions n, scientific m journals, and pu articles, errors in	of philosophy and ethics of rese isconducts (ii) different type ablications. (iii) components of the chemical analysis, research met	earch, es of hesis, trics.	PSO1, 2	K1				
CO2	Understand (i) the philosophy and basic ethics of research, plagiarism, scientific misconducts (ii) different types of literature survey, journals, and publications. (iii) components of thesis, research articles, errors in chemical analysis, researchPSO1,2K2									
CO3	Apply the knowledge to conduct the research considering PSO7,8 K3 ethical aspects and write the thesis and research articles to enhance research visibility									
CO4	Analyze t conduct structured	Analyze the literature to identify the knowledge gap to design, PSO7,8 K4 conduct and communicate the research work with a well-structured thesis and research article								
CO5	Structured mesis and research article Evaluate the ethical considerations in scientific research and publications and judge the quality and reliability of various PSO7,8 K5 publications and judge the quality and reliability of various enhance research visibility and citations. Evaluate the ethical considerations is scientific research and publications is scientific research and publications by devising strategies to Evaluate the ethical considerations is scientific research and publications is scientific research and publications is provided to the publication of the public									

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 1.1 Philosophy and ethics of research – Purpose of research, significance of research, scientific Originality. Various stages of scientific research 1.2 Committee on publication ethics (COPE) - Peer Review, Types of Journals (Subscription & Open Access Journals) - Type of Open Access Journals (Gold, Green & Platinum) - Article Processing Charges 1.3 Predatory Journals and cloned journals – Be all's list - Characteristic features of predatory/cloned Journals - Identifying and avoiding predatory journals - Consequences of publishing predatory articles 	12	CO1 CO5	K1 – K5
II	 Scientific Misconducts: Falsification (case studies) and Fabrication (case studies) 2.2 Plagiarism - Definition, Classification -Types (Complete Plagiarism, Source-based Plagiarism, Verbatim Plagiarism, Self or Auto Plagiarism and Accidental Plagiarism) with examples - Plagiarism detection tools - online services - causes and consequences of plagiarism. 2.3 Redundant Publications: Duplicate and overlapping publications, salami slicing – Selective Reporting and Misrepresentation of Data. 	12	CO1 - CO5	K1 – K5
III	3.1 Types of literature - primary, secondary and tertiary sources (Examples) - literature review in digital era - Online tools available in literature review [Author search, Journal search and Keyword search] - Identifying research gap & framing objectives-hypothesis (definition, types and characteristic features) - designing experiments/methodology 3.2 Search Engines: SciFinder, Scopus, Scientific Technical Information Network (STN) International, Google Scholar, Scirus, Chemfinder, OJOSE, ChemIndustry and ChemSpider. 3.3 Types of publications (Letter, communication, article, review (type of reviews), viewpoint, commentary, letter to the editor, editorial, corrigendum, erratum, rebuttal with examples)- Books and book chapters - ISBN & ISSN	12	CO1 - CO5	K1 – K5
IV	 4.1 Components of Thesis: Dissertation and Thesis writing: The general format, chapter format, page format, use of abbreviations, quotations, footnote, tables and figures, results and discussions, bibliography and references - Reference managers (EndNote and Mendeley as examples) 4.2 Components of research article: Title, keywords, abstract, introduction, methodology, results & discussion, figures, tables, equations, schemes and flowcharts, references, Acknowledgement 	12	CO1 - CO5	K1 – K5

 4.3 Errors in chemical analysis: Classification of errors and their minimization, accuracy, precision and significant figures. 4.4 Statistical tools and simple analysis (Mean, median, mode and standard deviation; Binominal distribution and Gaussian distribution) - levels of significance and levels of confidence 						
 V Research Metrics 5.1 Databases: Web of Science, Journal Citation Report, DOAJ & Scopus 5.2 Research Metrics: Journal Metrics - Impact factor, 5year impact factor, Source normalized impact per paper (SNIP), CiteScore, Scimago Journal Rank (SJR) - Author Metrics - h-index, i-10 index, g-index 5.3 Hot article, Cover article, Most read and downloaded papers - Author Profile: Google Scholar Profile, Mendeley author profile, Publons author profile, ORCID 5.4 Research visibility: Citations, self-citations, infographics, altmetrics, blogging, search engine optimization, Methods to improve citations 	12	CO1 - CO5	K1 – K5			
Improve citations Self-study Hands-on Training (demonstrations) not included for ICA & ESE 1. DOAJ, WoS & SCOPUS 2. Journal Finder 3. Online Plagiarism tools 4. Reference Manager 5. Scimago Journal Rank 6. Google Scholar Citation Analysis 7. Graphical Abstract/Infographic designing 8. Online Databases (CCDC, PDB, OCHEM, etc.,) 9. Misleading metrics – Analysis 10. Beall's list and predatory journals 11. Author metrics (h-index, i-10 index & g-index) 12. Journal metrics (lumpart Factor CiteScore Scimago Journal Bank & SNIP						
 Textbooks C. R. Kothari, Research Methodology: Methods and Techniques, New Age International Publishers, 2004 S.C. Gupta, and V.K. Kapoor, Fundamentals of Mathematical Statistics. Sultan Chand & Sons, New Delhi, 2014 H.F. Ebel, C. Bliefert, W.E. Russcy The art of Scientific Writing, WILEY-VCH VerlasGmbh & Co, 2nd Edition, 2004 A.A. Fuscaldo, B. J. Erlick, B. Hindman, Laboratory Safety - Theory and Practice, Academic Press, 1980 References M. L. Patten and M. Newhart Understanding Research Methods, 10th Edition, Taylor & Francis, 2017 K. S, Shrader-Frechette, Ethics of Scientific Research Issues in Academic Ethics, Rowman & Littlefield Publisher, 2004 A. M. Coghill, L. R. Garson, The ACS Style Guide Effective Communication of Scientific Information, ACS publication, 2006 						

Suggested Reading

1. M. J. Katz, From Research to Manuscript A Guide to Scientific Writing, Springer Publication, 2006 2. Roberts, Tim S., Student Plagiarism in an Online World: Problems and Solutions, Information Science Reference, Hershey, New York, 2008, IGI Global

3. S. B. Sigmann, L. R. McEwen, A. R. Smith, Teaching Chemical Safety and Information Skills Using Risk Assessment, ACS Symposium Series, Vol. 1232, 2016

Online Resources (accessed on 28 June 2022)

- 1. http://www.inflibnet.ac.in
- 2. <u>www.pubs.acs.org</u>
- 3. <u>www.sciencedirect.com</u>
- 4. http://spingerlink.com

5. http://rsc.or

M.Sc. Course Articulation Matrix

Course Outcomes	Program Outcomes Program Specific Outcomes												Cognitive Level			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	1
CO 1	3		-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	3	-	-	-	-	-	3	3	3	-	-	-	-	-	K2
CO 3	-	3		3	-	-	3	-	-	3	3	-	-	3	3	K3
CO 4	-	3		3	-	-	3	-	-	-	-	-	-	3	3	K4
CO 5	-	3	-	3	3	-	3	-		-	-	-	-	3	3	K5
Wt. Avg.	3	3	-	3	3	-	3	3	3	3	3	-	-	3	3	
Overall Mapping of the Course PO: 3 PSO: 3																

ADVANCED CHEMISTRY

Course Code								
Credits	5							
Hours / Cycle	4							
Category	Part III	Elective	Theory					
Semester	IV							
Year of	From 2023-24	From 2023-24 onwards						
Implementation								
Course Objectives	 To lear To unc To gain To unc To app 	 To learn about various aspects of asymmetric synthesis of organic compounds To understand about Lux Flood and Hard & Soft acid-base principles. To gain knowledge about non-aqueous solvents To understand the theory and application of advanced NMR techniques. To approximate the general methodian of data estimates 						

CO#	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels
On com	pleting the course successfully, the student will be able to		
CO1	(i) define stereospecific and stereoselective reactions, (ii) recall Lux- flood and HSAB concepts acids, (iii) relate the properties of aqueous and non-aqueous solvents, (iv) 1D and 2D NMR and (v) structure of a drug and its physicochemical properties.	PSO1, PSO2	K1
CO2	Explain the concepts of (i) asymmetric synthesis, (ii) compare and contrast various theories of acids and bases, (iii) classify and illustrate the functions of Non-aqueous solvents, (iv) extend the concept from basic NMR to advanced techniques such as COSY and HECTOR and (v) illustrate the theories of drug action with examples	PSO1, PSO3	K2
CO3	(i) make use of chiral reagents to carry out asymmetric synthesis, (ii) apply HSAB principle to explain the stability of compounds and explain Irwing William series, (iii) identify protic and aprotic non- aqueous solvents, (iv) apply 2D NMR techniques for structure determination and (v) build a table of drugs showing similar physicochemical properties.	PSO3, PSO4	К3
CO4	(i) compare the functions of chiral reagents and chiral catalysts, (ii) analyse the relationship between HSAB principle & electronegativity, Irwing-William series & polarizability, (iii) applications of non-aqueous solvents(iv) applications of DEPT experiment and (v) examine the merits and demerits of HSAB	PSO3, PSO4	K4
CO5	(i) assess various chiral auxiliaries, chiral substrate, chiral reagent and chiral catalyst for their capacity in asymmetric synthesis, (ii) evaluate Lux-Flood and HSAB concepts of acids and bases, (iii) compare the properties of ammonia and sulphuric acid as non- aqueous solvents, (iv) to identify the structure of simple organic molecules based on advanced NMR techniques and (v) evaluate actions of drug and the theories of drug action.	PSO2, PSO4	К5

	SYLLABUS										
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL							
Ι	Unit 1 Asymmetric Synthesis	12	CO1	K1 – K5							
	1.1 Basic principles of Asymmetric synthesis: Definition -		-								
	Stereospecific, Stereoselective – enantioselective and diastereoselective reactions.		CO5								
	1.2 Asymmetric synthesis using chiral auxiliary: Chiral										
	auxiliaries derived from proline, camphor, menthol and										
	oxazolidine-2- one. Asymmetric synthesis on chiral										

	substrate: Nucleophilic addition to α-chiral carbonyl compounds; Asymmetric synthesis using chiral reagents: Chiral organoboranes - Application of chiral organoboranes in reduction (Ipc2BCl) and allylation reactions Asymmetric synthesis using chiral catalysts: Sharpless epoxidation, dihydroxylation, amino hydroxylation of alkenes; Jacobson catalysts – Evans catalyst – Aziridination 1.3 Analytical methods for determining enantiomeric and			
	diastereomeric excess. Resolution of chiral ligands - BINOL, trans 1,2-diaminocyclohexane. Kinetic resolution			
II	of racemic mixtures. Unit 2 Selective concepts in Acids and Bases (12 hours) 2.1 Lux-flood concept of acids and bases: Definition, explanation and application 2.2 Hard and Soft Acids and Bases (HSAB): Symbiosis, Basic	12	CO1 -	K1 – K5
	principles – Irwing Willams series, Polarization and polarizability; Classification of acids and bases as Hard or Soft; Hardness and Softness – Theoretical principles, Electronegativity and Acid-Base strength		CO5	174 175
	 Unit 3 Chemistry of Non-Aqueous solvents (12 hours) 3.1 Introduction to Non-aqueous solvents, Protic and non-protic solvents – Definition and Examples, importance of non-aqueous solvents, leveling effect. 3.2 Behaviour of Ammonia and Sulphuric acid as non-aqueous solvents: Autodissociation, Chemical reactions taking place in ammonia and sulphuric acid medium 	12	- CO5	K1 – K5
IV	 Unit 4 Advanced NMR techniques (12 hours) 4.1 Pulse sequences, pulse width, spins, and magnetization vectors, DEPT experiment, Determining the number of attached hydrogens in methine carbons (CH), methylene carbons (CH2), methyl carbons (CH3) and quaternary carbons carbons (C) 4.2 2D NMR: COSY technique and HETCOR technique 4.3 Magnetic resonance imaging 	12	CO1 - CO5	K1 – K5
V	 Unit 5 Physico-medicinal chemistry (12 hours) 5.1 Phases of drug action: Pharmacokinetic Phase- Structure of eucaryotic cell (Cell components and their functions, Cell membrane models, Passive and Active transport of materials across cell membranes, Pinocytosis) 5.2 Drug action and physiochemical properties - hydrophobicity, electronic effect, steric effect. 5.3 Pharmacodynamic Phase- Drug action at receptors (the concept of receptors, structurally specific and structurally non-specific drugs, radiochemical studies of receptor sites, 	12	CO1 - CO5	K1 – K5

Agonists and Antagonists, binding force between drug and receptors)											
5.4 Drug - receptor theories: Occupancy theory, Rate theory,											
Induced fit theory, Activation-aggregation theory.											
Textbooks											
1. Advanced Organic Chemistry Part (A & B) Francis A Carey and Richard J Sundberg, V Edition,											
Springer, New York, USA											
2. J E Huheey, E A Keiter, R L Keiter and O K Medhi, Inorganic Chemistry: Principles of structure											
and reactivity, 4th Edition, Pearson Education India, 2006											
3. D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Introduction to Spectroscopy, 4 th Ed,											
Cengage Learning India Private Limited, 2009.											
4. J. B. Taylor, P. D. Kennewell, Introductory Medicinal Chemistry, John Wiley & Sons, 1984.											
References											
1. S. H. Pine, Organic Chemistry, 5th Edition, McGraw Hill International, 1987											
2. 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008											
3. 3. Jeffrey H. Simpson, Organic Structure Determination Using 2-D NMR Spectroscopy: A											
Problem-Based Approach, 2nd edition, Academic Press, 2012 M											
Suggested Reading											
eves, Stuart Warren, II Edition, 2019, Oxford University Press, New Delhi – 110 001, India											
Chemistry, Saunders Publications, USA, 1977 3. L. D. Field, H. L. Li, A. M. Magill, Organic Structures from											
Online Resources (accessed on 28 June 2022)											
1. <u>https://onlinecourses.nptel.ac.in/noc20_cy36/preview</u>											

Course Outcomes			Progra	im Outco	omes			Program Specific Outcomes							Cognitive Level	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	3		-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	2	-	-	-	-	-	3	-	3	-	-	-	-	-	K2
CO 3	3	3	1	-	-	-	-	-	-	2	3	-	-	-	-	K3
CO 4	3	2	1	-	-	1	-	-	-	3	2	-	-	-	-	K4
CO 5	3	3	1	-	-	-	-	-	2	-	3	-	-	-	-	K5
Wt. Avg.	3	2.5	1	-	-	-	-	3	2.5	2.7	2.7	-	-	-	-	
Overall Map	Overall Mapping of the CoursePO: 2.17PSO: 2.73															

M.Sc. Course Articulation Matrix

LOCF-fitted PG syllabus (2023-24)

ENTREPRENEURSHIP FOR CHEMISTS

Course	Code											
Cred	its	5										
Hours /	Cycle	4										
Category		Part	NA	Core	Theo	Theory						
Semester		IV	7									
Year	of	From	2023-24 o	nwards								
Implemen	ntation											
Course Objectives		•	 To know about various aspects of entrepreneurship To learn about business plans, challenges and opportunities in the field of entrepreneurship To study about Intellectual Property Rights (IPR) To be aware of entrepreneurial opportunities in chemical industries 									
CO#			Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On comp	oleting t	he cou	irse succe	ssfully, the student will be able	e to							
CO1	Recall the fundamental concepts and principles of business, entrepreneurship, Intellectual Property (IP) and ChemicalPSO3, PSO8K1											
CO2	Understand the fundamental concepts and principles of PSO3, K2 business, entrepreneurship, Intellectual Property (IP) and PSO8											
CO3	Apply ethics a	Apply the fundamental concepts and principles of business, ethics and entrepreneurshipPSO8K3										
CO4	Analyse and Comprehend the fundamental concepts and PSO8 K4 principles of business, the misconception in IP, role of chemical industries in India, entrepreneurship skill and the case studies											
CO5	Compare and evaluate (i) the business environment, challengesPSO8K5opportunities in entrepreneurship in general and chemicalindustries in specific and (ii) schemes for IP, innovation and											

SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL								
Ι	Business Basics Introduction, characteristics of business, understanding the business environment, business ethics, types of business organization, key business concepts: Business plans, exploring and understanding the markets need, capability, project management, finance and product design and methods of commercialization.	12	CO1- CO5	K1 – K5								
II	Entrepreneurship - I Entrepreneur, Entrepreneurship, and Enterprise – Definition; Characteristics of an entrepreneur, role and functions of an entrepreneur; types of entrepreneurships; Entrepreneurship development – Entrepreneurship a dynamic system, key entrepreneurial skills, challenges of entrepreneurship and measuring the entrepreneurship; Government and non- government schemes and programmes on start-ups and entrepreneurship.	12	CO1- CO5	K1 – K5								
III	Entrepreneurship - II Innovation, Invention, Discovery and Creativity: Definition, Factors important to expertise/skill acquisition; Types of innovation and Drucker's seven sources of innovation; Creative process- five stages of creativity, Innovation as more than problem Solving (Innovation pyramid), developing an invention, innovation and opportunities in India, Global challenges and cooperation's.	12	CO1- CO5	K1 – K5								
IV	Intellectual Property Rights (IPR) Introduction -concepts, importance of IPR, Types of IPR: Patent, Copyrights, Trademarks, Design, trade secrets geographical indication. Patents – Definition, Elements of patentability, protectable, duration of protection, rights and duties of patentee, assignment and license. Governments schemes in IPR and Career opportunities in IP.	12	CO1- CO5	K1 – K5								
V	Growing a Business in the Chemical Industry The opportunity matrix: A road map for scaling a chemical business, solution to an existing problem, solution looking for a problem, solution, Current challenges and opportunities for the chemical industries – supply of raw materials, energy, climate change, waste management and environmental impact, role of chemical industries in India and global economies.	12	CO1- CO5	K1 – K5								
Textbo	oks Gopalakrishnan and T.G. Agitha, Dringiples of Intellectual Property	T Eastern B	look com	nou Luckoow								
2009	Sopaiakrisiinan and 1.0. Aguna, I mulpies of menectual Property	, L'astern E		Jany, LUCKHOW,								

2. A. K. Yetisen, L. R. Volpatti, A. F. Coskun, S. Cho, E. Kamrani, H. Butt, A. Khademhosseini and S. H. Yun, Entrepreneurship, Lab Chip, 2015, 15, 3638 (DOI: 10.1039/C5LC00577A).

3. Chemistry - Developing Solutions in a Changing World; The European Association for Chemical and Molecular Sciences (EuCheMS): Brussels, Belgium, 2011

References

1. Chemistry Entrepreneurship Edited by (García-Martínez, Javier, Li, Kunhao), Wiley, 2022

2. The Oxford Handbook of Creativity, Innovation, and Entrepreneurship Edited by Christina E. Shalley, Michael A. Hitt, and Jing Zhou, Oxford University Press, 2005.

3. W.R. Cornish, Intellectual Property, Sweet & Maxwell, London, 2000.

Suggested Reading

1. H. N. Cheng, Sadiq Shah, Marinda Li Wu - Vision 2025_ How To Succeed in the Global Chemistry Enterprise- Chapter 8 (ACS Symposium Series 1157) American Chemical Society (2014).

Online Resources (accessed on 28 June 2022)

1. https://edu.rsc.org/resources/tutor-course-resources-business-skills-for-chemists/4012886.article

2. https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03288

3. https://ce.ioc.kit.edu/downloads/Chem_Entrepreneurship_Paper_en.pdf

4. https://ipindia.gov.in/resources.htm

5. https://www.startupindia.gov.in/content/sih/en/government-schemes.html

6. https://openstax.org/books/entrepreneurship/pages/4-2-creativity-innovation-and-

invention-how-they-differ

M.Sc. Course Articulation Matrix																
Course			Pro	ogram Ou	tcomes			Program Specific Outcomes								Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	_
CO 1	-	2	-	-	-	-	3	-	-	2	-	-	-	-	3	K1
CO 2	-	2	-	-	-	-	3	-	-	2	-	-	-	-	3	K2
CO 3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	3	K3
CO 4	-	-	-	-	-	-	3	-	-	-	-	-	-	-	3	K4
CO 5	-	-	-	-	-	-	3	-	-	-	-	-	-	-	3	K5
Wt. Avg.	-	2	-	-	-	-	3	-	-	2	-	-	-	-	3	
	Overall Mapping of the Course PO: 2.5															
	PSO:												PSO: 2.5			

LOCF-fitted PG syllabus (2023-24)