PROGRAM SPECIFIC OUTCOMES (PSO's)* for **M. Sc. Physics** At the time of graduation they would be able to:

PSO #	Statement	Mapped with PO#				
	Understand the principles of Classical Mechanics, Classical Electrodynamics,					
PSO 1	Statistical Mechanics and Quantum Mechanics.					
	Apply the above to understand and analyse Atomic, Molecular, Nuclear, Particle &	101,102				
	Condensed Matter systems and able to relate to various applications.					
	Use Mathematical methods in modeling of systems occurring in fundamental Physics					
PSO 2	as well as in Applied Sciences.					
	Understand the Physical properties and characterization of solids & materials of					
	technological interest					
	Design & perform simple experiments, analyse data, relate to Physical theory and able					
	to conceive technological applications.	PO3 PO4				
PSO 3	Analyse functioning of semiconductor devices, design and study analog and digital	PO5				
	circuits	105				
	Use Microprocessors, embedded microcontrollers for various applications					
	Pursue research in pure and applied Physics as well as in areas outside Physics, where					
PSO 4	the fundamental concepts, methodology, tools and problem-solving skills learnt can be					
	applied.					

*Minimum 3 Maximum 5.

Curriculum Overview Table for M.Sc Physics									
Componenets	Credits	Hours / Cycle							
Major Course (Including Practicals &	75	(spread over 4 semesters)							
project work)									
Electives	15	(spread over 4 semesters)							
Soft skill programme	8	4 (spread over 2 semesters)							
Internship	2	(to be undertaken during summer							
		vacation after 1 st year)							
Total	100								

Sem		Course		Instruction	Duration		Marks		a	
ester		Code	Course title	hours per Cycle	of exam	ICA	ESE	Total	Credits	
Ι		082PY1M0 1	Classical Mechanics and Statistical Mechanics	6	3	50	50	100	5	
Ι		082PY1M0 2	Electronics (Special) – I: Semiconductor Devices and Integrated Circuits	6	3	50	50	100	5	
Ι		082PY1M0 3	Mathematical Physics - I	6	3	50	50	100	5	
I & II			General Physics Practical I	6						
I & II			Electronics Practical I	6						
II		082PY2M0 1	Quantum Mechanics	6	3	50	50	100	5	
Π		082PY2M0 2	Electromagnetic Theory and Relativity	6	3	50	50	100	5	
Π		082PY2M0 3	Mathematical Physics - II	6	3	50	50	100	5	
I & II		082PY2M0 4	General Physics Practical I	5	4	50	50	100	4	
I & II		082PY2M0 5	Electronics Practical I	5	4	50	50	100	4	
II&III			Soft Skill Programme	2	3	50	50	100		
III		082PY3M0 1	Advanced Quantum Mechanics	6	3	50	50	100	5	
III	EC	082PY3M0 2	Special Electronics I	6	3	50	50	100	5	
III		082PY3M0 3	Solid State Physics	6	3	50	50	100	5	
III		082PY3M0 4	Nuclear and Particle Physics	6	3	50	50	100	5	
III&IV			General Physics Practical II	3						
III&IV			Electronics Practical II	3						
II&III	Part	082PC3C0 1	Soft Skill Programme	2					8	
IV		082PY4M0 1	Molecular and Spin Resonance Spectroscopy	6	3	50	50	100	5	
IV	EC	082PY4M0 2	Special Electronics II	6	3	50	50	100	5	
IV	Ont	082PY4E0 1	Nuclear Reactor Physics*	6	3	50	50	100	5*	
1.	Opt	082PY4E0 2	Materials Science*	0	5	50	50	100	5	
III&IV		082PY4M0 3	General Physics Practical II	6	4	50	50	100	4	
III&IV		082PY4M0 4	Electronics Practical II	6	4	50	50	100	4	
III&IV		082PY4M0 5	Project	outside class hours		50	50	100	5	
III&IV		082PY4M0	Viva Voce			50	50	100	4	

Curriculum Template of M.Sc Physics Programme – with PART I(Core) & Part II Courses

					3	
6						
Part-II	Internship	during vacation				2
			Tota	100		

*Optional_Nuclear Reactor Physics OR Materials Science

Core-Course title: CLASSICAL AND STATISTICAL MECHANICS

Course Code*	082PY1M01										
Credits	4										
Hours / Cycle	6										
Category	Part III	Core/ Theory									
Semester	I										
Year of Implementation	From the academic year	rom the academic year 2023-'24 onwards									
Course Structure	Theory	Tutorial	Pra	octical	Total Hours						
Course Structure	90				90						
Course Objectives	Course Objectives On completion of the course, the student will be able to										
		PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)								
CO 1 Define and re Mechanics and Statis	emember fundamental term stical Mechanics	s, concepts and theories in	n Classical	PSO 1	K1						
CO 2 Explain an equations. Understar	d interpret Lagrangian, ad Partition functions and C	Hamiltonian and Hami Classical & Quantum Statis	ilton-Jacobi stics.	PSO 1	K2						
CO 3 Apply Lagrang scattering, rigid body compute thermodyna to a thermodynamic	solve actions to m statistics	PSO 1, PSO 2	К3								
CO 4 Compare difference mechanical system.	rent formulations of Classi Analyze Classical, Bosonic	cal Mechanics and analyze and fermionic distribution	e the given ns.	PSO 1, PSO 2, PSO 4	K4						
CO 5 Evaluate the s Compare and choose	implest formulation for the the appropriate Statistics	e given classical mechanic for a given thermodynamic	cal system. c system.	PSO 1, PSO 2, PSO 4	K5						

* To be allotted by Examinations Office after the Approval of Academic Council **Minimum 3 Maximum 5.

	SYLLABUS: Classical and Statistical Mechanics									
UNIT	CONTENT	Hours	COs	Bloom's Taxonomy Level						
I	LAGRANGIAN FORMULATION Generalised coordinates – Constraints – D'Alembert's principle – Lagrange's equations of motion – Hamilton's variational principle and Lagrange's equation – Non-holonomic and non-conservative systems – Scattering in lab and centre of mass systems – Rutherford Scattering. Hamilton's Theory: Hamilton's equations – Cyclic variables – Principle of least action.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						
п	CANONICAL TRANSFORMATIONS Equation of CT – Lagrange and Poisson brackets – Invariance – Equation of motion in Poisson bracket's notation – ICT.Hamilton Jacobi Theory: H-J equation for Hamilton's principle function – Hamilton's characteristic equation – Separation of variables in H-J equation – Action angle variables.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						

III	RIGID BODY DYNAMICS Moments and products of inertia – Euler's equations of motion – Euler's angles – uniformly rotating frames – Foucault's pendulum – Top motion. Small Oscillations: Theory – Normal coordinates – Normal modes – Linear triatomic molecules.	15	1,2,3,4 &5	K1, K2, K3, K4, K5
IV	STATISTICAL MECHANICS Classical Statistics: Phase space – Ensembles – Liouville's theorem – M.B. distribution – Doppler broadening – Equipartition theorem – Entropy and probability.	15	1,2,3,4 &5	K1, K2, K3, K4, K5
V	PARTITION FUNCTION Partition function – Calculation of thermodynamic quantities – Rotational, vibrational and translational partition functions – Diatomic ideal gas.	15	1,2,3,4 &5	K1, K2, K3, K4, K5
VI	QUANTUM STATISTICS State function - Symmetry principles - Density matrix-B.E. distribution – Black body radiation – Planck's law – B.E. condensation – Degeneracy – F.D. distribution – Electron theory of metals – Qualitative comparison between classical and quantum statistics- Chandrasekhar limit – Pauli's spin paramagnetism – Debye's theory of specific heats of solids.	15	1,2,3,4 &5	K1, K2, K3, K4, K5

Prescribed Books/Text Books

1. H. Goldstein, Classical *Mechanics* 2nd edition, Narosa Publishing Co., (2001).

- 2. B. K. Agarwal and Melvin Eisner, Statistical Mechanics, 2nd edition New Age
- International Pvt. limited, Publishers (1989) New Delhi.
- 3. S.K. Sinha, Statistical Mechanics Theory and Application, TMH Publishing Co., (1990).

Reference Books

- 1. B. B. Laud, *Fundamentals of statistical mechanics*, New Age International pvt. Limited, Publishers (1998).
- 2. Federick Reif, *Fundamentals of statistical and thermal physics*,20th printing, McGraw Hill Publishing Co.,(1988) New York.

Suggested Reading

1. S. Lokanathan & R. S. Gambhir, Statistical and Thermal Physics, Printice-Hall India, New Delhi. Web Resources

Course Articulation Matrix: Classical and statistical Mechanics													
Course		Рі	rogran	nme O	utcom	ies	Programme Specific Outcomes					Cogniti	
S Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O1	PS O2	PS O3	PS O4	PS O5	ve Level
CO 1	3	3	1	1	-	-	3	3	3	-	3		K - 1
CO 2	3	3	1	1	-	-	3	3	3	-	3		K – 2
CO 3	3	3	1	1	-	-	3	3	3	-	3		K – 3
CO 4	3	3	1	1	-	-	3	3	3	-	3		K – 4
CO 5	3	3	1	1	-	-	3	3	3	-	3		K – 5
Wt. Avg.	3	3	1	1			3	3	3		3		
							2.2				3		
								Overal	ll Map	ping of	f the C	ourse	2.6

Core-Course title: Semiconductor Devices and Integrated Circuits

Course Code*	082PY1M02										
Credits	4										
Hours / Cycle	6										
Category	Part III Co	bre/ Theory									
Semester											
Year of Implementation	From the academic year 2023-'24 onwards										
Common Stamontering	Theory	Tutorial Pra	octical	Total Hours							
Course Structure	75	15		90							
 Course Objectives On completion of the course, the student will be able to Know the physics and operating principle of basic and special semiconductor devices Understand IC fabrication technology Understand various wave shaping circuits of linear and non-linear types and memory storage devices. 											
	(s)**	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)								
CO1: To remember an Amp, timer, and stora	nd recall basics of semicondu ge devices	uctor physics, IC technology, Op-	PSO1	K1							
CO2: To understand devices, principles in memory devices	the basic concepts underly nvolved in IC technology,	ving the working of semiconductor digital gates, op-amp, timer, and	PSO1, PSO2	K2							
CO3: To apply the pl applications	nysics of semiconductors to	realize various processes and	PSO2, PSO3, PSO4	К3							
CO4: To analyze problems at different	the theoretical equations at levels	nd experiments to apply to solve	PSO2, PSO3	K4							
CO5: To evaluate theoretical backgroun	concepts of semiconductor nd, processes, principles and	r physics by learning the detailed working of devices	PSO2, PSO3	K5							

* To be allotted by Examinations Office after the Approval of Academic Council **Minimum 3 Maximum 5.

	SYLLABUS: Semiconductor Devices and Integrated Circuits									
UNIT	CONTENT	Hours	COs	Bloom's Taxonomy Level						
I	Physics of Semiconductor Devices: Energy band theory of semiconductors-Density of electrons in conduction band – Density of holes in valence band – Fermi levels in intrinsic and extrinsic semiconductors – Drift and diffusion currents – Recombination and life time of minority carriers – Einstein's relation – Poisson's equation – energy band diagram of a PN junction diode – continuity equation – Application of continuity equation to junction diodes and transistors.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						
II	Special Semiconductor Devices: FET: Field effect transistor – Physical interpretation of the characteristic curve – theory of JFET – FET biasing – common source and common drain amplifiers at low frequency – FET as voltage variable resistor.	20	1,2,3,4 &5	K1, K2, K3, K4, K5						

		7
MOSFET: Depletion and Enhancement modes – MOSFET as switch and		
resistors – Dual gate MOSFET. TUNNEL DIODE: Quantum mechanical		
tunneling – Characteristics on the basis of energy band diagrams –		
Theory of tunnel diode – Applications of tunnel diode as switch		
amplifier and oscillator.		
GUNN DIODE: RWH mechanism – Explanation of RWH mechanism		
on the basis of electron transfer – negative relaxation time – Gunn effect		
– Modes of operation of Gunn diode. THYRISTORS: PNPN Diodes –		
construction – operation – characteristics – SCR construction and		
operation – characteristics – SCR as half wave and full wave rectifiers –		
Diac and Triac.		
IC Fabrication Technology		
Monolithic IC Technology – Planar process – Fabrication of BJT, FET,	1.0.0.4	
III and MOSFET – CMOS technology – monolithic diodes - Metal 10	1,2,3,4	K1, K2, K3, U4, U5
semiconductor contact – Integrated resistors, capacitors – Characteristics	85	к4, кэ
of IC components – VLSI – VHLD – Digital gates – MOSFET inverter,		
NOR, NAND gates – CMOS inverter, NOR, NAND gates.		
Linear Analog Circuits		
DC Analysis of IC Op-Amp – Instrumentation amplifier – Transducer		
bridge – Instrumentation amplifier – Applications – Temperature	1,2,3,4	K1, K2, K3,
indicator, Fluxmeter, ECG and weighing machine – Analog integrator,	,5&6	K4, K5
differentiator – Design of analog circuits for the solution of differential		
equation and simultaneous equations using Op-Amps – Sample and hold		
System – Analog multiplexer.		
Waya shaping circuits Provision AC/DC converts Provision rootifiers		
Precision clamp East half wave full wave rectifier Active average		
detector Active peak detector logarithmic & exponential amplifiers		
Logarithmic multiplier A nalog squaring & square root circuits		
Comparators – Zero crossing detectors – Time marker generator –	1,2,3,4	K1, K2, K3,
Multivibrators – astable (Square wave) Monostable (Pulse generator)	&5	K4, K5
Bistable (Schmitt trigger) circuits – Triangle wave generator – Timer		
555 – Internal architecture and working – Monostable and astable		
operation – Voltage control oscillator (VCO) IC 566 – Active		
Butterworth filter - PLL concept – Phase locked loop IC 565 –		
Application – Frequency multiplier, FSK modulator and demodulator.		
Memory Circuits and Systems		
Programming bipolar PROMs – AIM technique – Floating gate		
(FAMOS) – MOS static RAM cell – MOS dynamic RAM cell –		K1 K2 K3
VI Refreshing circuits – Charged coupled devices – Basic CCD operation – 10		K_1, K_2, K_3, K_4
Two phase CCD – Magnetic bubble memory – Auxiliary memory		137, 133
storage – Magnetic disk, floppy disk and Wincester hard disk – CD –		
Laser P/W systems Elach memory (memory stick)		

Prescribed Books/Text Books

- 1. S.M.Sze, Semiconductor devices Physics and Technology, John Wiley & Sons, (1985) New York.
- 2. Jacob Millman and Christos.C.Halkias, Integrated Electronics, TMH, (2005) NewDelhi.
- 3. Ramakant .A.Gayakwad, Op Amps and integrated circuits,4th Edition, EEE, (1994).
- 4. Taub and Shilling, Digital Integrated Electronics, Mc Graw-Hill, (1983) New Delhi,.

Reference Books

- 1. R.F.Coughin and F.F.Driscol, Opamp and linear integrated circuits, Prentice Hall Of India, (1996) New Delhi.
- 2. M.S.Tyagi, Introduction to semiconductor devices, John Wiley & Sons, New York.
- 3. P.Bhattacharya, Semiconductor Optoelectronic devices, 2nd edition, Prentice hall of India, (2002) New

Delhi.

4. B.Somnath Nair, Digital electronics and Logic design, Prentice Hall Of India, (2002) New Delhi.

Suggested Reading

- 1. Malvino and Leach, Digital Principle and application 5th edition, TMH (2002) New Delhi.
- 2. R.L.Boylestad and L.Nashelsky, Electronic devices and circuit theory, 8th edition, Pearson Education (2003) New Delhi.

Web Resources

https://www.ti.com/seclit/ml/ssqu016/ssqu016.pdf

Semiconductor devices & Integrated circuits - Course Articulation Matrix														
Course			Progra	amme (Dutcom	ies			Progr	amme Sj	pecific C	outcomes		Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PSO1	PSO2	PSO3	PSO4		Level
CO 1	3	1	1				1		3	3	1	1		K1
CO 2	3	2	1				2		3	3	2	2		K2
CO 3	3	3	3				3				3	3		K3
CO 4	3	3	3				3				3	3		K4
CO 5	3	3	3				3				3	3		K5
Wt. Avg.	3	2.4	2.2				2.4		3	3	2.4	2.4		
							2.5					2.7		
									Over	all Map	ping of t	he Cours	e	2.6

CORE-Course title: MATHEMATICAL PHYSICS – 1

Course Code*	082PY1M03									
Credits	4									
Hours / Cycle	6 hours/week									
Category	Part III C	ore – Theory								
Semester	Ι									
Year of Implementation of CO's	From the academic year <u>June 2023</u> onwards									
Course Structure	Theory	Tutorial	Practical	Tot	al Hours					
Course Structure	85	5	-		90					
Course Objectives	 By completing this course, the student will be able to Recall and understand the properties of mathematical tools that are vital for the study of physical systems such as differential equations, vector analysis and matrix algebra. Analyse and examine the model equations and their properties – such as second order differential equations that warrant series solutions, vector calculus equations, and matrix equations as well as special functions and tensor analysis – that arise in various branches of theoretical physics such as classical mechanics, quantum mechanics, and relativity. Determine and evaluate the solutions to ordinary and partial differential equations, vector integrals, applied matrices and tensor equations. 									
Course Outcome(s)** PSO Addressed Bloom's Taxonomy Levels (K1 to K6)										
CO1 : Define and ren Second order differen ordinate systems, vect of eigenvalues and eig	nember the basic terms tial equations and relate or algebra, vector calcu- genvectors of matrices a	and concepts underlying ed Special functions, Wa ulus, Matrices. To know t and Tensors.	Infinite Series, ve equation, co- the applications	PSO1	K1					
CO2 : Understand a convergence, various wave equation, differ Matrices and Tensors.	and interpret the conc 2^{nd} order differential rent special functions	epts involved in Infinite equations, their power so and their applications,	e Series and their eries solution and Vector Calculus,	PSO2	K2					
CO3: To construct at equations and solve pa ii) To model and solve iii) To build matrix eq	nd develop power serie artial differential equation conservation equation quations and solve for e	s solutions to second ord ions with boundary value is using vector calculus. igenvalues and eigen vec	er differential es. etors.	PSO1, PSO2	К3					
CO4 : i) To classify differential equations ii) To analyse matrix iii) To compare and cl	CO4 : i) To classify and examine the special functions being the solutions of special differential equations and inspect their properties. ii) To analyse matrix operations and distinguish quadratic forms. iii) To compare and classify contravariant and covariant tensors.									
CO5: i) To deduce and determine the solutions to PDEs of vibrating strings, membranes, and cavities. ii) To Evaluate and deduce the Stokes's theorem, Gauss's theorem and the Green's theorem. iii) To judge and interpret the simultaneous reduction of two quadratic forms. iv) To assess and explain Christoffel's symbols in various orthogonal coordinate systems.										

	SYLLABUS: MATHEMATICAL PHYSICS - 1			
Unit	CONTENT	Hours	COs	Bloom's Taxonomy Level
I	Infinite Series Series of positive terms - Alternate series - Tests for convergence - Comparison test, De Alembert's ratio test, Cauchy's root test, Raabe's test, logarithmic and integral test - Power series - Radius of convergence - Test for uniform convergence.	13	1,2,3,4 ,5	K1, K2, K3, K4, K5
II	Differential Equation of Second Order With Variable Coefficients Solution by power series method (Frobenius method) - Root of indicial equation unequal but not differing by an integer - Root of indicial equation unequal but differing by an integer - Bessel's equations of the zeroth order, of order n (n is not an integer), of order n (where n is an integer positive), Legendre's equation - Hermite's equation - Laguerre's equation - Associated Laguerre's differential equation - Hypergeometric and confluent hypergeometric differential equation. Laplacian operator in Cartesian and polar (cylindrical and spherical) coordinates in two and three dimensions – Partial differential equation and wave equation – Solution by the method of separation of variables - Application to wave propagation - Normal modes of strings, membranes (square and circular) - waves in cavities.	17	1,2,3,4 ,5	K1, K2, K3, K4, K5
ш	Special Functions Bessel's function of I kind and II kind – Legendre polynomials - Associated Legendre functions - Hermites polynomials - Hypergeometric and confluent hypergeometric functions and their properties - Gamma and beta functions - Their applications.	15	1,2,3,4 ,5	K1, K2, K3, K4, K5
IV	Vector Analysis Vector field - Scalar product and orthonormal basis - Differentiation of vectors -gradient, divergence, curl, Laplacian – Orthogonal curvilinear coordinates - Cylindrical and spherical coordinates - Expression for gradient, divergence, curl and Laplacian in these coordinates - Integration of vectors - Line, surface and volume integrals of vectors - Problems and applications of Stokes' theorem, Gauss's theorems, Green's theorem in the plane.	15	1,2,3,4 ,5	K1, K2, K3, K4, K5
v	Matrices Basic concepts of matrix algebra - Characteristics equation – Eigen values and Eigen vectors - Cayley Hamilton's theorem – Diagonalisation of special types of matrices - Matrices as operators - Trace of a matrix and theorems on trace of matrices - Quadratic forms - Reduction of a quadratic form into a sum of squares (conic sections) - Simultaneous reduction of two quadratic forms into sum of squares - Function of matrix.	15	1,2,3,4 ,5	K1, K2, K3, K4, K5
VI	Tensor Analysis: Definition of scalars, contravariant and covariant vectors – Einstein's summation convention - Definition of covariant, contravariant and mixed tensors - Symmetric and anti-symmetric tensors - Fundamental operations with tensors: addition, subtraction, outer multiplication, contraction and inner multiplication of tensors - Quotient theorem - Christoffel's symbols of I kind and II kinds - Christoffel's symbols in orthogonal systems like Cartesian, cylindrical and spherical coordinates - Covariant derivatives of tensors.	15	2,3,4,5	K2, K3,K4,K5

- 1. Riley, Hobson and Bence, *Mathematical Methods for Physics and Engineering*, Cambridge University Press, 2016.
- 2. M. Boaz, *Mathematical Methods in the Physical Sciences*, 3rd Ed Indian Adaptation, Wiley, 2023.
- 3. Arfken, Weber and Harris, *Mathematical Methods for Physicists*, 7th Ed., Elsevier, 2012.
- 4. E.Kreyszig, Advanced *engineering Mathematics*, 8th edition, John Wiley & Sons, (2002) New York. 5. C. Harper, An Introduction to Mathematical Physics, Prentice Hall, 1978,

Reference Books

- 1. Sokolnikoff I.S and Sokolnikoff F.S, *Higher mathematics for engineers and physicists*, Mc Graw Hill (1941) New York.
- 2. Advanced calculus 2nd edition A.E. Taylor
- 3. Rainville. E.D (Macmillan), Infinite series
- 4. Sen .B Special functions, (Allied pub., New Delhi)
- 5. Bell (Van Nostrand), Special functions for scientists and engineers
- 6. Morse. P.M, Vibration and sound, Mc Graw hill
- 7. Slater J. C and Frank N. H Electromagnetism, Mc Graw hill
- 8. M. D. Greenberg, Advanced engineering Mathematics, second edition, Pearson Education, (2002) New Delhi.

Suggested Reading

Web Resources

1.

Mathematical Physics - Course Articulation Matrix														
Course	Programme Outcomes									amme Sj	pecific C	Outcomes	5	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PSO1	PSO2	PSO3	PSO4		Level
CO 1	-	3	1	1	2	1	2		3	3	2	1		K1
CO 2	-	3	1	1	2	1	2		3	3	2	1		K2
CO 3	-	3	1	1	2	1	2		3	3	2	1		К3
CO 4	-	3	1	1	2	1	2		3	3	2	1		K4
CO 5	-	3	1	1	2	1	2		3	3	2	1		K5
Wt. Avg.	-	3	1	1	2	1	2		3	3	2	1		
							1.7					2.25		
	1						Ove	ral	l Mappir	ng of the	Course			1.97

Core-Course title:	QUANTUM MECHANICS
--------------------	--------------------------

Course Code*	082PY2M01									
Credits	4									
Hours / Cycle	6									
Category	Part III C	Core/ Theory								
Semester	II									
Year of Implementation	rom the academic year 2023-'24 onwards									
Course Standard	Theory	Tutorial	P	Practical	Total Hours					
Course Structure	75	15			90					
Course Objectives	urse Objectives On completion of the course, the student will be able to									
		PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)							
CO1: To remember an representation theory, theories and Identical	nd recall the history and bas Time evolution process, An particle system	ics of Quantum mechanic ngular momenta, approxir	es, nation	PSO1, PSO2	K1					
CO2: To understanc Quantum mechanics, momenta, approximat	I the basic concepts und representation theory, Tin ion theories and Identical p	lerlying general formalisme evolution process, A article system	sm of ngular	PSO1, PSO2	К2					
CO3: To apply the ba processes and applica	asic theories and concepts le tions	earnt to realize various		PSO2, PSO3, PSO4	К3					
CO4: To analyse, in different levels	nterpret the theoretical equ	ations for solving proble	ms at	PSO2, PSO3, PSO4	K4					
CO5: To evaluate c detail and derive equ	oncepts of Quantum Mecha ations	nics by learning the theor	ries in	PSO2, PSO3	K5					

* To be allotted by Examinations Office after the Approval of Academic Council **Minimum 3 Maximum 5.

Syllabus: QUANTUM MECHANICS										
UNIT	CONTENT	Hours	COs	Bloom's Taxonomy Level						
I	FORMALISM OF QUANTUM MECHANICS The Schrödinger's equation – Interpretation and conditions on the wave functions – Ehrenfest's theorem – Stationery states – Operator formalism – Eigenvalues and Eigen functions of observables – Orthonormality – The DIRAC delta function – completeness of set of Eigen functions – Simultaneous measurability – Proof of uncertainty principle – Commutability and compatibility.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						
п	REPRESENTATION THEORY Basis in function space – Momentum and configuration representations – Linear vector spaces – Dirac's ket and bra vector notation – State space – Matrix representation – Operators.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						
III	QUANTUM DYNAMICS Equation of motion – Schrödinger picture [A] – Heisenberg picture [B] – The interaction picture – Linear harmonic oscillator by [A],[B]	15	1,2,3,4 &5	K1, K2, K3, K4, K5						

	and Dirac's method.– Particle in a central potential – Hydrogen atom – Reduction of two body Hamiltonian – Hydrogenic Eigen functions and spectra.			
IV	ANGULAR MOMENTUM Commutation rules for angular momentum operators – Eigenvalue spectrum – Raising and lowering operators – Matrix representation of angular momentum – Spin matrices and wave function – Combinations of two angular momenta – Clebsh-Gordon coefficients.	15	1,2,3,4 ,5&6	K1, K2, K3, K4, K5
V	APPROXIMATE METHODS Perturbation theory in non-degenerate cases – Applications to ground state of Helium atom, anharmonic oscillator - STARK effect in Hydrogen – Variation method – Application to the ground state of the Helium atom – WKB approximation.	15	1,2,3,4 &5	K1, K2, K3, K4, K5
VI	IDENTICAL PARTICLE SYSTEM Symmetric and antisymmetric wave functions – Bosons and Fermions – The exclusion principle – Second quantization – Occupation number representation – Ensembles of identical systems – The density matrix.	15	1,2,3,4 &5	K1, K2, K3, K4, K5

Prescribed Books/Text Books

- 1. V. K. Thankappan, Quantum Mechanics, New Age Intl. (2004) New Delhi.
- 2. P.M. Mathews and K. Venkatesan, Textbook of Quantum Mechanics, TMH (1977) New Delhi.
- 3. A. Ghatak and Loganatnan S, *Quantum mechanics, theory and applications*, Macmillan Ltd, (2004), New Delhi.

Reference Books

- 1. E. Merzbacher, *Quantum Mechanics*, 2nd Edition, John Wiley & Sons, (1970) New York.
- 2. J.J. Sakurai, Modern Quantum Mechanics, Benjamin Cummings (1985).
- 3. R.P. Feynman, R.B. Leighton And M. Sands, *The Feynman Lectures on Physics, Vol.3*, Narosa Pub. House, (1992).
- 4. C. Cohen-Tannoudji, B.Diu, Franck L, *Quantum Mechanics, I & II*, John Wiley & Sons (1977) New York
- 5. V. Devanathan, *Quantum Mechanics*, Narosa Pub. House, (2005) Chennai.

Suggested Reading

G. Aruldhas, Quantum Mechanics2nd edition, PHI, NewDelhi

Web Resources

https://www.compadre.org/quantum/?

	Quantum Mechanics - Course Articulation Matrix													
Course		-	Prog	gramme	Outco	omes	_	Pro	ogramme	e Specifi	c Outcor	nes	Cognitive	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO 1	3	3					1		3	3	1	1		K1
CO 2	3	3					2		3	3	2	2		K2
CO 3	3	3					3		3	3	3	3		K3
CO 4	3	3					3		3	3	3	3		K4
CO 5	3	3					3		3	3	3	2		K5
Wt. Avg.	3	3					2.4		3	3	2.4	2.2		
2.8 2.65														
							(Overall	Mappin	g of the	Course	2.72		

Core-Course title: ELECTROMAGNETIC THEORY AND RELATIVITY

Course Code*	082PY2M02										
Credits	4										
Hours / Cycle	6										
Category	Part III C	ore/ Theory									
Semester	II										
Year of Implementation	From the academic year 2	rom the academic year 2023-'24 onwards									
Course Stars stores	Theory	Tutorial Pra	actical	Total Hours							
Course Structure	90	-		90							
Course Objectives	On completion of the course, the student will be able to										
	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)									
CO 1: Define and rep Electromagnetic The	member fundamental terms, cory and Relativity.	concepts and theories in	PSO1, PSO2, PSO3	K1							
CO 2: Explain and underlying Lorentz t	d interpret Maxwell's equination equipment of the determination of the d	ations and Relativistic mechanics stic Electrodynamics.	PSO1, PSO2, PSO3	K2							
CO 3: Apply Maxwe electromagnetic prob to Electromagnetism	ell's equations to solve elect plems using various techniq and identify 4-scalars and	rostatic, magnetostatic and ues. Apply Lorentz transformations 4-vectors.	PSO1, PSO2, PSO3	К3							
CO 4: Analyze electric and magnetic properties of solids and their interactions with electromagnetic waves. Discover the relationship between Special Relativity & PSO3PSO1, PSO2, PSO3HElectromagnetism.PSO3											
CO 5: Evaluate Elec	PSO1, PSO2, PSO3	K5									

* To be allotted by Examinations Office after the Approval of Academic Council **Minimum 3 Maximum 5.

SYLLABUS: Electromagnetic Theory and Relativity										
UNIT	CONTENT	Hours	COs	Bloom's Taxonomy Level						
I	ELECTROSTATICS IN VACUUM AND DIELECTRICS Gauss' law – Electrostatic potential – Poisson's and Laplace's equations – Multipole expansion of potential and energy in an electric field for a charge distribution – Polarization – Electric displacement – Molecular polarisability and electric susceptibility – Clausius–Mossotti equation – Electrostatic energy in dielectric medium.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						
Π	BOUNDARY VALUE PROBLEMS IN ELECTROSTATICS Boundary conditions - First uniqueness theorem – Conductors and second uniqueness theorem - Formal solution of problems with Green's function - Method of images – Point charge in the presence of grounded conducting sphere – Conducting sphere in uniform electric field – Green's function for sphere – Dielectric sphere in a uniform electric field.	15	1,2,3,4 &5	K1, K2, K3, K4, K5						
III	MAGNETOSTATICS:	15	1,2,3,4	K1, K2, K3,						

				10
	Biot-Savart law – Divergence and curl of magnetic induction (B) – Magnetic vector potential – Current loops in external fields - magnetic dipole - Magnetic dipole in a non -uniform magnetic field - Vector potential and magnetic induction for a circular current loop –Magnetic moment, force and torque on a current distribution in external magnetic induction – Magnetostatic energy – Magnetic induction and magnetic field in macroscopic media – Boundary conditions – Uniformly magnetized sphere in an external magnetic field.		&5	K4, K5
IV	MAXWELL'S EQUATIONS: Maxwell's equations – Poynting's theorem - Vector and scalar potential – Gauge invariance – Coulomb and Lorentz gauges – retarded potentials – Lienard–Wiechert potentials - Fields and radiation of an oscillating dipole.	15	1,2,3,4 ,5&6	K1, K2, K3, K4, K5
V	PROPAGATION OF PLANE ELECTROMAGNETIC WAVES: Propagation of plane electromagnetic waves in free space – Non-conducting medium – Conducting medium and in low pressure ionized gases – Reflection and refraction of electromagnetic waves at a dielectric interface.	15	1,2,3,4 &5	K1, K2, K3, K4, K5
VI	RELATIVITY AND RELATIVISTIC ELECTRODYNAMICS: Lorentz transformations and basic kinematic results of special theory of relativity – Addition of velocities – Relativistic momentum and energy of a particle, space time of special relativity, relativistic electrodynamics in vacuum – Invariance of charge, current density – Vector and scalar potentials in 4-vectors - Transformation equations for field vectors E and B – Covariance of Maxwell's equation in 4-vector form.	15	1,2,3,4 &5	K1, K2, K3, K4, K5

Prescribed Books/Text Books

- 1. Paul Lorrain and Dale R. Corson, *Electromagnetic field and waves*, 2nd edn, W.H.Freeman and Co., (1970).
- 2. B.B. Laud, Electrodynamics, Wiley Eastern Ltd., (1987).
- 3. D J Griffiths Introduction to Electrodynamics, 3rd edn, Prentice Hall of India, (2003).

Reference Books

- 1 J.D. Jackson, *Classical Electrodynamics*, 2nd edn., Wiley Eastern Ltd., (1975).
- 2. Feynmann, Leighton, R.B, and Mathew Sands, *Feynmann Lectures on Physics Vol II*, Narosa Publishing House, (1964).

Suggested Reading

- 2. Andrew Zangwill, Modern Electrodynamics, Cambridge University Press (2012)
- 3. Akira Ishimaru, *Electromagnetic wave propagation, Radiation and Scattering, From fundamentals to Applications*, 2nd edn, IEEE Press, WILEY (2017)

Web Resources:

- 1. https://web.mit.edu/8.02t/www/802TEAL3D/visualizations/guidedtour/Tour.htm
- 2. <u>https://ocw.mit.edu/courses/res-6-002-electromagnetic-field-theory-a-problem-solving-approach-spring-2008/pages/textbook-contents/</u>

Course Articulation Matrix: Electromagnetic Theory and Relativity													
Course Outcome s		Pı	rogran	nme O	utcom	ies	Programme Specific Outcomes					Cognitive	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PS O1	PS O2	PS 03	PS O4		Level
CO 1	3	3	1	1	-	-	3	3	3	3	-		K - 1
CO 2	3	3	1	1	-	-	3	3	3	3	-		K – 2
CO 3	3	3	1	1	-	-	3	3	3	3	-		K – 3
CO 4	3	3	1	1	-	-	3	3	3	3	-		K – 4
CO 5	3	3	1	1	-	-	3	3	3	3	-		K – 5
Wt. Avg.	3	3	1	1			3	3	3	3			
2.2 3													
							Ove	erall M	lapping	g of th	e Cour	se	2.6

MASTER OF SCIENCE (PHYSICS)

Core-Course title: MATHEMATICAL PHYSICS II

Course Code	082PY2M03									
Credits	4									
Hours / Cycle	6	6								
Category	Core/ Theory									
Semester	II									
Year of Implementation	For students admitted	For students admitted from June 2008								
Comme Standard	Theory	Tutorial	Practical	Total Hours						
Course Structure	80	10	0	90						
Course Objectives	 On completion of the one of the one	course, the student wi incepts involved in co le Theory, Groups, ir is in complex analysi os, integral transform epts learnt in this cou chnology.	ill be able to omplex analysis, conf ntegral transforms, ve s, conformal mapping s, vector space and p urse that are applied in	formal mapping, ector space and g, Sturm-Liouville robability. n 21 st century						

Course Outcome(s)**	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)
CO1 : To recall and revise the basic concept of complex analysis, conformal	PSO1	K1
and probability		
CO2: To exemplify and discuss concepts involved in complex analysis,	PSO1,	K2
conformal mapping, Sturm-Liouville Theory, Groups, integral transforms, vector space and probability.	PSO2	
CO3: To solve problems in complex analysis, conformal mapping, Sturm-	PSO2,	K3
Liouville Theory, Groups, integral transforms, vector space and probability.	PSO3,	
	PSO4	
CO4: To analyse principles learnt in this course by applying them in problems	PSO2,	K4
of different levels.	PSO3	
CO5: To evaluate concepts learnt in this course that are applied in 21 st century	PSO2,	K5
science and technology.	PSO3	

SYLLABUS: Mathematical Physics II									
UNIT	CONTENT	Hours	COs	Bloom's Taxonomy Level					
Ι	Functions of Complex Variables Complex numbers - Analytic functions - Elementary functions - Integrals – Cauchy Goursat theorem and Cauchy integral - Power series - Taylor series and Laurent's series- Residue and poles - Residue theorem - Applications of residue theorem - Evaluation of definite integrals and summation of series. Representation of functions of contour integrals - Gamma, Bessel and Legendre functions.	15	1,2,3,4 &5	K1, K2, K3, K4, K5					
Π	Conformal Mapping Mapping of elementary functions - Conformal mapping - Applications of conformal mapping- Boundary value problems - Dirichlet and Neumann problems – Poisson's formula- Applications to fluid flow and electrostatic	10	1,2,3,4 &5	K1, K2, K3, K4, K5					
III	Sturm-Liouville Theory Orthonormal functions set and expansion - Second order linear differential operators- Sturm Liouville problem - Self-adjoint operators – Orthonormality of Eigen functions – Expansion of function in terms of orthonormal basis- Completeness. Concepts of theory of distributions - Dirac delta function – Delta calculus - Representation of delta functions - Applications of the delta calculus.	10	1,2,3,4 &5	K1, K2, K3, K4, K5					
IV	Group Theory Elements of group theory: Groups - Definitions and examples - Sub groups - Cayley's theorem – Cosets - Lagrange's theorem – Conjugate classes - Invariant subgroups – Factor groups – Homomorphism - Direct product group – Symmetry groups: Symmetry elements point groups and space groups - Group representation: Reducible and irreducible representation - Schur's Lemmas - The great orthogonality theorem - Criteria for irreducibility - Character of a representation- Character tables.	20	1,2,3,4 ,5&6	K1, K2, K3, K4, K5					
V	Integral Transforms Laplace transform and inverse Laplace transforms - Faltung theorem - Application to solution of differential equations, partial differential equations, integral and integrodifferential equations. Fourier series - Analysis of periodic waveforms - Discrete frequency spectra – Fourier integral - Fourier transform - Applications to boundary value problems.	15	1,2,3,4 &5	K1, K2, K3, K4, K5					
VI	Linear Vector Space and Probability Vectors in n – dimensions - Linear dependence and independence of Vectors - Basis – Representation of vectors and linear operators with respect to a basis - Transformation under change of basis - Schmidt orthogonalisation process - Bessel's inequality – Schwarz inequality - Unitary transformations. Definition of probability - Independent events - Mutually exclusive events – Repeated and independent trials - Compound events – Binomial, Poisson and normal (Gaussian) distributions - Standard deviations mean, variance, moments of the distributions - Theory of errors- Principle of least squares - Application of least squares to solution of linear equations - Curve fitting – Linear regression.	20	1,2,3,4 &5	K1, K2, K3, K4, K5					

Prescribed Books/Text Books

- 1. B. D Gupta, *Mathematical Physics*, 2nd revised edition, Vikas pub. Co Ltd (1997) New Delhi.
- 2. R.V. Churchill, Complex variables and Applications, McGraw Hill, Kogakushs.
- 3. M. R Speigal, Complex variables (Schaum's outline series), McGraw Hill.
- 4. Sneddon I. N, Fourier series, (Reutledge and Kegan Paul).
- 5. R.V Churchill, Fourier series and boundary value problems
- 6. Frank Ayres. M. Matrices (schaum's series) (chapters 1-14)
- 7. M. R Speigel, Laplace transforms (schaum's series).
- 8. A.W Joshi, *Elements of group theory for physicists*, 3rd edition, Wiley Eastern Ltd.

Reference Books

- 1. Eugene Butkov, Mathematical physics
- 2. Sokolnikoff and Redheffer, Mathematics for physicists

3. M. Tinkham, Group theory and quantum mechanical applications of group theory

Suggested Reading

- 1. David M. Bishop, Group theory
- 2. Hammermesh, Group theory
- 3. M.K Venkatraman Engineering mathematics vol III A, The National Publishing

Company, Madras.

Web Resources

http://homepage.physics.uiowa.edu/~ghowes/teach/2016phys4761/lec4761.html https://www.physics.uoguelph.ca/phys3130-mathematical-physics-lecture-notes

	Mathematical Physics II - Course Articulation Matrix													
Course		Programme Outcomes							Progra	amme Sp	pecific C	outcomes	5	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PSO1	PSO2	PSO3	PSO4		Level
CO 1	2	1	1				1		2	2	1	1		K1
CO 2	3	2	1				2		3	3	2	2		K2
CO 3	3	3	3				3				3	3		K3
CO 4	3	3	3				3				3	3		K4
CO 5	3	3	3				3				3	3		K5
Wt. Avg.	2.8	2.4	2.2				2.4		2.5	2.5	2.4	2.4		
2.45										2.45				
	Overall Mapping of the Course										2.45			

CORE-Course title: Practical I General Physics Experiments

Course Code*	232PY2M03								
Credits									
Hours / Cycle	12/Cycle (I Semest	ter) and 9/Cycle (II S	emester)						
Category	Part I	Major Practical –	I General						
Semester	I & II								
Year of	2023 /'24								
Implementati									
on		1							
Course	Theory	Tutorial	Practic	al	Total Hours				
Structure	-	-							
Course ObjectivesTo demonstrate the understanding of the fundamental concepts and laws in physics by setting up laboratory equipments efficiently and carrying out experimental procedures.									
	Course Outcome	(s)**	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)					
CO1: To recall	the formula behind	the experiments.	PSO-1, PSO3	K1					
CO2: To unde involved in diagram/circuit	rstand the basic pri experiments t diagrams.	nciples and concepts hrough tabulation/	PSO-1, PSO 2, PSO 3	K2					
CO3: To execu	ite and demonstrate	setting up of the	PSO-2, PSO 3	K3	ALL GENERAL				
experiments.					EXPERIMENTS				
CO4 : To experforming the	K4								
costco									

	LIST OF EXPERIMENTS - GENERAL								
S.No	Exp. No.	Name of the Experiment							
1	G1	MEYER'S DISC – Viscosity of liquid							
2	G2	BIPRISM							
3	G3	HYPERBOLIC FRINGES – Young's Modulus and Poisson's ratio							
4	G4	SOLAR SPECTRUM – Rydberg's constant							
5	G5	PLANCK'S CONSTANT – Grating and Spectrometer							
6	G6	ELLIPTIC FRINGES – Young's Modulus and Poisson's ratio							
7	G7	LASER – Grating Constant							
8	G8	STEFAN'S CONSTANT							
9	G9	HYDROGEN SPECTRUM – \mathbf{H}_{α} , \mathbf{H}_{β} and \mathbf{H}_{γ} & Rydberg's constant							
10	G10	THERMISTOR – Temperature Coefficient							
11	G11	LASER – Thickness of thin wire							
12	G12	BH CURVE – B-H response of the given ferromagnetic substance							
13	G13	POLARIZABILITY OF LIQUIDS – Hg and H ₂ spectrum							
14	G14	SERIES AND PARALLEL RESONANT CIRCUIT – Capacitance							

	Co	urse A	rticula	ation I	Matrix	: Pra	ctical I	Ge	neral F	hysics	Exper	iments		
Course]	Progra	mme	Outco	mes	Pr	ogram Ou	ime Sp tcomes	becific S		Cognitive Level		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PSO 1	PSO 2	PSO 3	PSO 4		
CO 1	-	3	1	-	3	1	1		3	-	1	-		K1
CO 2	-	3	1	-	3	1	1		2	3	1	-		K2
CO 3	-	3	1	-	3	1	1		-	2	3	-		K3
CO 4	-	3	1	-	3	1	1		-	-	2	3		K4
CO 5	-	2	1	2	2	-	-		-	-	2	3		K5
Wt. Avg.	-	2.8	1	0.4	2.8	0.8	0.8		1	1	1.8	1.2		
1.43 1.25														
	Overall Mapping of the Course										1.34			

CORE-Course title: Practical II Electronics Experiments

Course Code*	232PY2M04										
Credits											
Hours / Cycle	12/Cycle (I Semest	ter) and 9/Cycle (II Sem	ester)								
Category	Part I	Practical II Electronics Experiments									
Semesters	I & II										
Year of											
Implementation											
Course Structure	Theory	Tutorial	Practical	Te	otal Hours						
Course Structure	-	-									
Course Objectives	To demonstrate the	understanding of the fund	damental concepts	s and laws in p	hysics by						
	setting up laborator	ry equipment efficiently a	and carrying out ex	xperimental pr	ocedures.						
	Course Outcome(s	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)								
CO1: To recall the f	Formula behind the e	xperiments.	PSO-1, PSO3	K1							
CO2 : To understand in experiments throu	d the basic principle igh tabulation/ diagr	es and concepts involved am/circuit diagrams.	PSO-1, PSO 2, PSO 3	K2							
CO3 : To execute an circuit.	nd setting up experir	PSO-2, PSO 3	К3	All Electronics Experiments							
CO4 : To experime the experiments.	ent and tabulate the	PSO-2, PSO 3	K4								
CO5: To evaluate observations.	the results obtaine	PSO-3, PSO 4	K5								

	LIST OF EXPERIMENTS - ELECTRONICS								
S.No	Exp. No.	Name of the Experiment							
1	E1	UJT - Characteristics & Relaxation oscillator							
2	E2	OP AMP - Basic arithmetic and calculus operations – IC 741							
3	E3	OP AMP: Solving the Simultaneous Equations – IC 741							
4	E4	ASTABLE MULTIVIBRATOR – IC 741							
5	E5	ASTABLE MULTIVIBRATOR – IC 555							
6	E6	WIEN BRIDGE OSCILLATOR – IC 741							
7	E7	PHASE SHIFT OSCILLATOR – IC 741							
8	E8	FET – Common Source Amplifier							
9	E9	TRIANGLE WAVE GENERATOR – IC 741							
10	E10	FUNCTION GENERATOR- IC8038							
11	E11	MONOSTABLE MULTIVIBRATOR – IC741							
12	E12	MONOSTABLE MULTIVIBRATOR – IC 555							
13	E13	MONOSTABLE MULTIVIBRATOR – IC 74121							
14	E14	D/A CONVERTER – IC 741							
15	E15	FET – Common Drain Amplifier							
16	E16	SAWTOOTH WAVE GENERATOR – IC 555							
17	E17	SCHMITT TRIGGER – IC741							
18	E18	SCHMITT TRIGGER – IC 555							
19	E19	PHASE LOCKED LOOP – Frequency multiplier							
20	E20	ACTIVE FILTERS – IC 741							
21	E21	VOLTAGE CONTROLLED OSCILLATOR – IC 555 & IC 741							
22	E22	R-2R LADDER D/A CONVERTER – IC 741							

	Course Articulation Matrix													
Course]	Progra	mme	Outco	mes			Programme Specific Outcomes				es	Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PSO1	PSO2	PSO3	PSO4		
CO 1	-	3	1	-	3	1	1		3	-	1	-		K1
CO 2	-	3	1	-	3	1	1		2	3	1	-		K2
CO 3	-	3	1	-	3	1	1		-	2	3	-		K3
CO 4	-	3	1	-	3	1	1		-	-	2	3		K4
CO 5	-	2	1	2	2	-	-		-	-	2	3		K5
Wt. Avg.		2.8	1	0.4	2.8	0.8	0.8		1	1	1.8	1.2		
	1.43 1.25													
	Overall Mapping of the Course											1.34		

ADVANCED QUANTUM MECHANICS

(For students admitted from June 2008)

Semester: III Course code: 082PY3M01 Hour/Week: 6 Credits: 4

UNIT 1: TIME EVOLUTION PROCESS

Time dependent perturbation theory – First and second order – Constant and harmonic perturbations – Transition probabilities – Selection rules for dipole radiation – Application to potential scattering and inelastic collisions – Adiabatic and sudden approximations.

UNIT 2: EMISSION and ABSORPTION of RADIATION

[Semi-classical treatment]: The EINSTEIN coefficients – Spontaneous and induced emission of radiation from semiclassical theory – Radiation field as an assembly of oscillators – Interaction with atoms – Emission and absorption rates.

UNIT 3: SCATTERING THEORY

The scattering problem – Formulation in QM – Scattering amplitude and cross-section – Effect of identity of particles – Scattering by spherically symmetric potentials – The method of partial waves – Phase shifts – Optical theorem - RAMSAUER-TOWNSEND effect – Scattering by a perfectly rigid sphere – Scattering by a square well potential – Resonance scattering – Green's function – BORN approximation and its validity – Scattering by YUKAWA potential – COULOMB scattering.

UNIT 4: ATOMIC and MOLECULAR STRUCTURE

Central field approximation – THOMAS-FERMI model – HARTREE's method – HARTREE-FOCK equation – The method of self-consistent field – Hydrogen molecule ion – HEITLER-LONDON method – Hydrogen molecule – Covalent bond – Spin-orbit interaction as correction to central field approximation – Alkali atoms – Doublet separation – Intensities – Complex atoms – Coupling schemes.

UNIT 5: RELATIVISTIC WAVE EQUATION

The KLEIN-GORDON equation – Charge current FOUR vector – The DIRAC equation – DIRAC matrices – Free particle solution – Spin angular momentum – Introduction of electromagnetic field and interpretation of negative energy states – Magnetic moment – The hydrogen atom – Spin orbit coupling energy.

UNIT 6: Some OTHER ASPECTS of QUANTUM MECHANICS

[BFS 6]Group theory and Quantum Mechanics: M.O. theory – Matrix element – transition probabilities –[BFS 4,5] FEYNMAN path integrals – [BFS 1 & 3] FEYNMAN Diagrams – QED: Positron theory – [BFS 4] Introduction to Quantum computing.

Books for Study:

- 1. V. K. Thankappan, *Quantum Mechanics*, New Age Intl., (2004) New Delhi.
- 2. P. M. Mathews and K. Venkatesan, *A Textbook of Quantum Mechanics*, TMH, (1977) New Delhi.
- 3. V.Devanathan, *Quantum Mechanics*, Narosa Pub. House, (2005) Chennai.
- 4. R. L. Liboff, *Introductory Quantum Mechanics*, Pearson Education (2003) New Delhi.
- 5. B. H. Bransden & C. H. Joachain, *Quantum Mechanics*, Pearson Education (2000) New Delhi.
- 6. F. A. Cotton, *Chemical applications of Group theory*,3rd Edition, Wiley Eastern Ltd.,(1990).

Books For References:

1. E. Merzbacher, *Quantum Mechanics*, 2nd Edition, Wiley International Edition (1970).

- 2. J.J. Sakurai, *Modern Quantum Mechanics*, Pearson Education (1994) New Delhi.
- 3. P.A.M. Dirac, *The Principles of Quantum Mechanics*, Oxford University Press (1991).
- 4. C. Cohen-Tannoudji, B.Diu, Franck L, *Quantum Mechanics Vol I & II*, John Wiley International Edition (1977) New York.

ELECTRONICS (SPECIAL) - II

8085 MICROPROCESSOR AND INTERFACING

(For students admitted from June 2008)

Semester – III Course code: 082PY3M02 Hours/week: 6 Credits: 4

UNIT 1: DECODERS AND MEMORY INTERFACE

Decoders and data selectors - MUX, DEMUX – Applications of MUX – Memory systems – Linear selection, coincidence selection and two dimensional selection addressing – ROM/RAM memory organizations – ROM & its applications - Address and word expansion -Memory map – Exhaustive decoding – Partial decoding – Memory interfacing with 8085

UNIT 2: INTERRUPTS & I/O OPERATIONS

Interrupt circuits – Software and hardware interrupts - SIM, RIM instructions – SID, SOD serial I/O transfer - IN and OUT instructions – Hardware design of I/O interface – direct I/O, memory mapped I/O & polled I/O – Interrupt driven I/O and hand shaking operations.

UNIT 3: INTERFACING PERIPHERIAL I/O DEVICES

8255 (PPI) – Matrix scanning – Keyboard interface – Seven segment display– Keyboard/ display interface 8279 – Timer interface 8253/8254 - Interrupt controller 8259 – DMA controller 8237 – Communication interface USART 8251.

UNIT 4: TRANSDUCERS

Classification of transducers – Selecting a Transducer – Strain gauges – Gauge factor – Metallic sensing elements – Gauge confirmation – Displacement Transducers- Capacitive, Inductive and LVDT, Piezo electric and potentiometric Transducers – Thermocouples and thermistor – Photo sensitive devices.

UNIT 5: ADC/DAC TECHNIQUES

DAC - Variable resistance network - Binary ladder - D/A converter - D/A accuracy and resolution – ADC – Simultaneous counter - Counter type counter - Continuous counter - Dual slope counter - Successive approximation method - Voltage to frequency conversion and Voltage to Time conversion.

UNIT 6: INTERFACING ADC/DAC

Interfacing D/A converter (DAC IC 0808) - Waveform generation - Interfacing a 10-bit D/A converter (AD7522) - A/D converter using Interrupt Integrator type A/D converter (ADC 0801) - Software controlled successive approximation A/D converter (AD 558) – stepper motor.

Books for Study:

- 1. Ramesh S. Gaonkar. B, *Microprocessor architecture, programming and application*, Wiley International Edition 11th Reprint (1989).
- 2. Douglas V Hall, *Microprocessor and Interfacing, Programming and Hardware*, 2nd edition Tata McGraw Hill Publications,(2005) New Delhi.
- 3. Malvino Leach, *Digital principles and applications*,5th edition Tata McGraw Hill Publications, (2002) New Delhi.
- 4. Millman and Grabel, *Microelectronics*, 2nd edition TMH Publishing Company Ltd.,(1999) New Delhi.
- 5. Taub And Schilling, *Integrated electronics*, Tata McGraw Kogakusha Ltd Hill, International student edition,11th printing (1984).
- 6. Albert D. Helfrich And William D. Cooper *Modern electronic instrumentation and measurement techniques*, 5th edition, Prentice Hall of India.

NUCLEAR PHYSICS AND PARTICLE PHYSICS

(For students admitted from June 2008)

Semester – III Course code: 082PY3M04	Hours/week:6	Credits: 4
---------------------------------------	--------------	------------

UNIT 1: ELEMENTS OF NUCLEAR STRUCTURE AND LIQUID DROP MODEL

Nomenclature (isotopes, isotones, isobars, isomers, mirror pairs) – Experimental method for nuclear radius – Expression for electric quadrupole moment and magnetic dipole moment of nucleus.

Systematics of stable nuclides - Nuclear coulomb energy - Semi empirical mass formula of Weizacker - Nuclear stability - Mass parabola for odd A and even A nuclides - Hypothetical Z_0 - Line of beta stability - Radius constant from binding energy for mirror nuclei - Bohr Wheeler theory of fission - Condition for spontaneous fission- activation energy - Seaborg's expression.

UNIT 2: SHELL MODEL AND OTHER MODELS

Shell Model: Evidence for magic numbers - Square well potential - Linear harmonic oscillatory potential – Spin orbit potential - L-S splitting – Explanation of magic numbers - Energy level diagram - Prediction of shell model - Prediction of nuclear spin and parity – Nuclear statistics.

Schmidt model - Magnetic moments of nuclei - Schmidt lines - Nuclear isomerism.

Collective Model: Explanation of quadrupole moment - Prediction of sign of electric quadrupole moments – Rotational energy levels – High spin states - Shape transition.

Nilsson model – Deformed shell model.

Optical model: Elementary ideas.

UNIT 3: NUCLEAR FORCES

Properties of nuclear forces - Charge independence and spin dependence - Ground state of deuteron - Magnetic dipole moment and electric quadrupole moment of deuteron -Central and non central forces - Tensor force - Exchange forces - Majorana, Barlett, Heisenberg, Wigner forces - Isotopic spin formalism - Spin orbit force - Saturation condition - Meson theory of nuclear forces - Yukawa potential - Low energy nucleon - Nucleon scattering effective range theory.

UNIT 4: NUCLEAR DECAY

Nuclear disintegration studies: Laws of radioactivity - Successive radioactive transformation - Radioactive equilibrium between parent and daughter activities – Ideal, transient and secular equilibria – Parent-daughter relationship in radioactive dating.

Alpha Decay: Q value of the decay - Energy carried by alpha particles - Gamow's theory of alpha decay - Geiger Nuttal law - Alpha spectra - Short and long - Range particles - cluster radioactivity - Alpha spectrometer.

Beta Decay: Transition energies of beta decay and electron capture – continuous beta spectrum – Neutrino hypothesis - Neutrino properties - Neutrino rest mass - Fermi's theory of Beta decay - Fermi-Kurie plot - Sargeant diagram - Comparative half life - Allowed and forbidden transition - Degree of forbiddenness - Fermi and Gamow -Teller selection rules - Parity non conservation in weak interactions - Wu's experiment – Neutrino helicity - Beta spectrometer.

Gamma decay: Internal conversion - Angular distribution and correlation - Gamma ray spectrometer.

UNIT 5: NUCLEAR REACTIONS AND REACTOR PHYSICS

Nuclear reactions and cross section-geometrical cross section - Resonance- Breit–Wigner dispersion formula for 1=0 - statistical theory of nuclear reactions- Evaporation probability and cross section - Direct reactions - Theory of stripping and pick up reactions- Surface reactions.

Nuclear chain reaction - Four factor formula - Critical size of the reactor - Fermi age equation - Classification of reactors - Breeder reactors - Materials for reactors - Radioactive poisoning of the reactor - Radiation hazards - Dosimetry and shielding – Fusion- thermo nuclear reactions- Source of stellar energy- Controlled thermo nuclear reactions.

UNIT 6: ELEMENTARY PARTICLES

Classification - Mass, spin, interaction – Baryons, mesons, leptons – Fermions, Bosons – Field particles – Photon, graviton, hadrons – Conservation laws – Isospin and isospin quantum numbers – Strangeness – Hypercharge – Quark model – Gell Mann Okubo mass formula - Quark structure of Hadrons - Weak interactions - Decays of muon, neutron and strange particles

Books for Study:

- 1. R. Roy and P. Nigam, Nuclear physics, Wiley Eastern Ltd., New Delhi.
- 2. Bernard L Cohen, Concepts of nuclear physics, 9th reprint, TMH, (1989) New Delhi.
- 3. R.C Sharma, Nuclear physics, 4th revised edition K. Nath & co.,(1989) Meerut.
- 4. Samuel Wong, Nuclear physics, Prentice-Hall Of India Private Limited, (2005) New Delhi

Books for Reference:

- 1. H.A Enge, *Nuclear physics*, Addition Wesley pub.co. London.
- 2. Marmier and Shelton, Physics of Nuclei and Particles Vol I, 2nd print Academic press,(1971) London.
- 3. I. Kaplan, Nuclear *Physics*, 2nd edition, Narosa Pub. Co., (1989) Bombay.
- 4. J. M. Blatt and V. F. Weiss Kopf, Theoretical *Nuclear Physics*, John Wiley and Sons, (1952) New York.
- 5. R. D. Evans, The Atomic Nucleus, Tata McGraw Hill Book Co., (1978) New Delhi.
- 6. S. B. Patel, Nuclear Physics Wiley Eastern Ltd., (1991) Madras.
- 7. D. C. Tayal, *Nuclear Physics*, 1st edition, Himalaya Pub House,(2003) Bombay
- 8. S Glasstone, *Source Book on Atomic Energy*, 3rd edition Affiliated East-West Press, (1967) Madras.

SOLID STATE PHYSICS

(For PG students admitted prior to and from June 2011)

Semester –III	Course code: 082PY3M03	Hours/week: 6	Credits:4
Semester -m	Course coue. 0021 1510105	TIOUIS/WEEK. U	cicuits.

UNIT 1: STRUCTURE OF SOLIDS AND DEFECTS

- i) <u>Crystal Basics</u>: 7 crystal systems; 14 Bravais lattices; point groups (no derivation); Miller indices; reciprocal lattice and Ewald's construction.
- ii) <u>Types of bonding:</u> Metallic, covalent, ionic, Van der Waals' and hydrogen bonding; Born-Meyer theory of ionic crystals and its limitations; Born-Haber cycle.
- iii) <u>Defects in crystals:</u> Point defects; Schottky and Frenkel defects; color centers; slip, edge and screw dislocation; Burger vectors; effect of defects on properties.

UNIT 2: MECHANICAL PROPERTIES OF SOLIDS

- i) <u>Stress and strain tensor:</u> Elastic constants; reduction in number of elastic constants in cubic crystals; wave propagation along (100) and (111) directions of a cubic crystals; experimental determination of the elastic constants; importance of elastic constants.
- ii) <u>Lattice vibrations</u>: Lattice vibrations of 1D diatomic chain; acoustic and optical branches; qualitative discussion of the dispersion in 3D crystals; Brillouin zone; phonon states and experimental studies on phonons.

UNIT 3: THERMAL PROPERTIES OF SOLIDS

<u>Average energy of an oscillator</u>: Debye's theory of specific heats and T^3 law; representation of specific heat in terms of θ_D -T plots; derivation of Gruneisen's law of thermal expansion from free energy; phonon thermal conduction and its variation with temperature; normal and Umklapp processes; impurity and boundary scattering.

UNIT 4: FREE ELECTRON THEORY OF METALS

<u>Free electron theory of metals:</u> Density of states; Fermi-Dirac statistics; Fermi level; effective mass of the electron; Drude model of electrical conductivity; Wiedmann-Franz equation; thermal conductivity; electronic specific heat and paramagnetic susceptibility; Hall effect; magnetoresistance; electrical conductivity at high frequencies.

Energy band theory; periodic potential; Bloch theorem; Kronig and Penny model; tight binding approximation; experimental study of band structure.

UNIT 5: MAGNETIC PROPERTIES OF SOLIDS

Review of basic concepts & formulae – Distinction between magnetic materials-Diamagnetism : Classical theory – paramagnetism : Classical theory & Weiss modification – Quantum theory of paramagnetism – Quenching of orbital angular momentum – ferromagnetism : Classical theory – Quantum theory of ferromagnetism – Curie – Weiss law – Domain wall - Antiferomagnetism & Ferrimagnetism (Introduction) – Structure of Ferrites– Meissner Effect – Type I and Type II Superconductors – London equation.

UNIT 6: DIELECTRICS AND OPTICAL PROPERTIES OF SOLIDS

Dielectrics : Classification of dielectric materials – Dielectric polarization – Dielectric constant & displacement vector – Claussius- Mossitti relation – Types of polarizability – Dipolar Polarizability – frequency dependence of dipolar Polarizability – Ionic Polarizability-

Electronic Polarizability – The Classical theory – Dependence of frequency & temperature on total Polarizability – Peizo electricity, ferroelectricity (Introduction)

Optical properties of Ionic Crystals: Drude model – macroscopic theory of optical constants – dispersion and absorption – excitons- luminescence types- introduction to NLO and Liquid crystals

BOOKS FOR STUDY:

- 1) Solid State Physics C. Kittel, 5th edition, Wiley Eastern Ltd.
- 2) Solid State Physics A. J. Dekker, Macmillan and Co. Ltd.
- 3) Handouts given by the course teacher.
- 4) Solid State Physics S. O. Pillai, New Age International (P) Ltd., Publishers, Reprint 2003.
- 5) Solid State Physics Gupta and Kumar, K. Nath and Co. Reprint 2006
- 6) Material Science and Engineering A first course, V. Raghavan, 5th Edition, Prentice Hall of India, 2004.
- 7) Solid State Physics Structure, Properties of Materials M. A. Wahab, Narosa Publishing house Pvt. Ltd, 2005

BOOKS FOR REFERENCE:

- 1) Solid State Physics C. M. Kachhava, Tata McGraw Hill Co.(1990)
- 2) Physics of Solids C. A. Wert and R. M. Thomson, McGraw Hill Book Co.
- Fundamentals of Solid State Physics B. S. Saxena, R. C. Gupta and P. N. Saxena, Pragati Prakashan, Meerut (1990).
- 4) Principles of Solid State H.V. Keer, Wiley Eastern Ltd (1993)
 - 5) Quantum theory of Solid State: An introduction by Ler Kantorovich, Kluwer Academic Publishers

NUCLEAR REACTOR PHYSICS (Optional) (For students admitted from the June 2008)

Semesters – IV Course code: 082PY4E01 Hours/week: 3 Credits: 3

UNIT 1: INTRODUCTION

Particle wavelength – Nuclear radii - Nuclear mass - Binding energy of radioactivity – Q value of nuclear reactions - Nuclear cross sections – Macroscopic cross sections - Differential cross sections – Critical energies for fission fragments – Prompt neutrons – Delayed neutrons –Energy release per fission – Reactor power – Fuel burn – Up and Fuel consumption rates.

UNIT 2: DIFFUSION OF NEUTRONS

Neutron Flux – Neutron current density – The equation of continuity – Fick's law – the diffusion equation – Steady state solution for infinite planar source, point source in an infinite medium – Diffusion length – The reciprocity theorem.

UNIT 3:

Energy loss in elastic collisions – Moderation of neutrons in hydrogen – Lethargy – Moderation of neutrons for A>1 – Fermi Age theory – Solution to the age equation – Planar source in an infinite slab – In an infinite medium – Point source in an infinite medium – Measurement of neutron age.

UNIT 4:

Criticality of an infinite homogenous reactor – Buckling – Criticality of rectangular parallelepiped. Sphere and infinite cylinder.

UNIT 5:

Infinite rector with no delayed neutrons – The reactivity equation – The prompt critical condition – Changes in reactivity – Temperature coefficients – Fission poisoning.

UNIT 6:

Control – Rod worth – Fuel management – Natural reactors – Thermal reactors - Intermediate reactors – Fast reactors – Breeding – The Thorium converter – Light water Reactors – Heavy water Reactors – Heat generation and removal – Radiation shielding and reactor safeguards – Evolution of reactors – India Reactors – Nuclear submarines.

Books for Study:

- 1. John R Lamarsh, *Introduction to Nuclear Reactor Theory* Addison Wesley Publishing Company 2nd printing (1992)
- 2. Paul .F. Zweifel, *Reactor Physics*, Mc Graw Hill Book Company (1973) India.

Books for Reference:

- 1. Richard Stepheson, Introduction *to nuclear Engineering*, Mc Graw Hill Book Company (1974) New York.
- 2. Suresh Gard, Feroz Ahmed and L.S Kothari *Physics of Nuclear Reactors*, Tata McGraw Hill Pub. Co. Ltd, London.
- 3. Samuel Glasstone and Edmund , *Nuclear reactor theory*

MATERIALS SCIENCE (Optional)

(For students admitted from June 2008)

Semesters –IV	Course code: 082PY4E02	Hours/week: 3	Credits: 3
Semesters –IV	Course code: 082PY4E02	Hours/week: 3	Credits: 3

UNIT 1:

Crystal structures – Bonds – Quantum mechanics of solids – Band Structure – Quantum nature of nanoworld.

UNIT 2: ANALYTIC TECHNIQUES IN MATERIALS SCIENCE

X-ray and neutron diffraction techniques – Thermo Luminescence Spectroscopy [TLS] – UV-VIS-IR spectroscopy – FTIR – AUGER Spectroscopy – Secondary Ion Mass spectrometry[SIMS] – Field Ion Microscope[FIM] – TEM & SEM – ESCA,EDAX,EXAF – Impedance measurements – Magnetic measurements- Ultrasonic measurements.

UNIT 3: NANO TECHNOLOGY

FEYNMAN revisited – N.Taniguchi – Definition – Introduction – Nanomaterials –Quantum Wells, Wires, and Dots – Carbon Nanostructure -Thin Film Technology – Overview of deposition methods and applications.

INTEL nanometer technology – VLSI progress – INTEL's record – Silicon laser technology – Integrated optics – Components and integrated optic systems.

UNIT 4: NEW MATERIALS

Polymers, HTS, Ceramics, SuperIonic Conductors: Introduction – Structure – Production – Characteristic properties – Applications.

ZIRCONIAS, SIALONS, ZEOLITES, FULLERENES.

UNIT 5: APPLICATIONS

Magnetic memory devices - GMR reading head.- Display devices : LED – LCD – TFT – OLED – Plasma.- Energy - Solar Cells – Fuel Cells – Electric Cells – The basic lead-acid technology – Li-polymer – Li-MH.

UNIT 6:

A review document on any recent material/materials science aspect: [25 pages]: to be evaluated.

Books for Study:

- 1. J. C. Anderson, K.D. Leaver, R.D. Rawlings, J.M. Alexander, *Materials Science for Engineers*, Nelson Thornes (2003) UK.
- 2. C. M. Srivastava, C. Srinivasan, Science of Engineering materials,
- 3. M. A. Wahab, *Solid state physics (structure and properties of materials)*, New Age International Pvt Ltd (2003) New Delhi.
- 4. Charles P. Poole, Jr., Frank J. Owens, *Introduction to Nanotechnology*, John Wiley & Sons, Inc. (2003) New York.
- 5. Woodruff And Delchar, *Experimental techniques of Surface Science*, CUP (1994) Camb.
- 6. *Handbook of Analytical Methods for Materials, Materials Evaluation and Engineering*, Inc (2001) MN.
- 7. Goswami. A, Thin Film Fundamentals, New Age International Publishers, (1996) Delhi.

Books for Reference:

- 1. Edward L. Wolf, Nanophysics and Nanotechnology, An Introduction to Modern Concepts in Nano science, John Wiley & Sons, (2004) New York.
- 2. Bharat Bhushan, Ed., Springer Handbook of Nanotechnology, Springer Verlag, (2004) London.

- 3. Wilson, Mick; Kannangara, Kamali; Smith, Geoff et al., Nanotechnology Basic Science and Engineering Technologies, CRC Press, (2002) Mass.
- 4. Bowen D K And Hall C R, *Microscopy of Materials Modern Imaging Methods using Electron, X-ray and Ion Beams*, Macmillan, (1975) London.
- 5. R. Saito, G. Dresselhaus and M.S. Dresselhaus (Eds.), *Physical Properties of Carbon nanotubes*, Imperial College Press, (1998) London.

MOLECULAR AND SPIN RESONANCE SPECTROSCOPY

(For students admitted from June 2008)

Semester – IV Course code: 082PY4M01 Hours/week: 6 Credits:4

UNIT1: MICROWAVE SPECTROSCOPY

Rotation of molecules - Rigid and non-rigid rotator - Diatomic molecules-Linear polyatomic molecules - Symmetric top molecules - Stark effect - Quadrupole moment and hyperfine structure - Inversion spectrum of ammonia - Experimental techniques- Ammonia Maser.

UNIT2: INFRARED SPECTROSCOPY

Vibration of polyatomic molecules - Classical and quantum mechanical theories -Vibration spectra of simple polyatomic molecules (linear, spherical, symmetric top) –Rotation - Vibration interaction - General force field - Force constant -Morse potential energy curve - Experimental techniques - Applications. Reflectance – Absorbance – IR spectroscopy (RAIRS).

UNIT3: RAMAN AND ELECTRONIC SPECTROSCOPY

Classical and quantum mechanical theories - Depolarization ratio - Pure rotation and Rotation-vibration Raman spectra - Experimental techniques - Determination of the structure of molecules and crystals - Group theory and normal modes of vibration of polyatomic molecules - Laser Raman Techniques.

Electronic spectra of diatomic molecules - Born-Oppenheimer approximation -Intensity of electronic bands - Franck-Condon principle - Dissociation energy - Fortrat parabola - Experimental techniques - Electron energy loss spectroscopy (EELS).

UNIT4: NMR SPECTROSCOPY

Theory - Bloch's equations - Steady state solutions of Bloch's equations - Relaxation Processes - Line shape and line width - Screening constants - Theory of chemical shift – high resolution NMR - NMR spectra of liquids -Spin-spin interaction - First order spectrum -Quadrupole effect - Experimental techniques - Applications.

UNIT5: ESR AND NQR SPECTROSCOPY

Theory - spectra of organic free radicals in solution - Hyperfine structure - Splitting of spectral lines - ESR of hydrogen atom - Spectrum of radicals containing multiple sets of equivalent protons - g-factor - Crystal field effects - Experimental techniques-Applications.

NQR - Theory - Axial symmetry and non-axial symmetry - Factors influencing the line width - Effect of applying weak magnetic field - Experimental techniques - Applications.

UNIT6: LASERS, MOESSBAUER SPECTROSCOPY AND SURFACE SPECTROSCOPY

Laser principle and theory - Characteristics of laser beam - Einstein's coefficients – Solid state lasers - Ruby laser-Nd: YAG laser - Gas lasers - He-Ne gas laser, CO_2 laser - semiconductor laser - Injection lasers.

Principle - Experimental set up to study Moessbauer effect - Major interactions - Chemical Isomer shift - Quadrupole splitting and Zeeman splitting - Applications.

Surface Spectroscopies: Photo electron spectroscopy (PES) – X ray photo electron spectroscopy (XPES) – Ultraviolet PES – Auger electron spectroscopy (AES).

Books For Study:

- 1. Straughan and Walker, Chapman and Hall *Spectroscopy Vol I, II, III*, John Wiley and sons Inc., (1976) New York.
- 2. Colin.N. Banwell And Elaine M. McCash, *Fundamentals of Molecular Spectroscopy*, 4th edition, Tata Mc Graw Hill Publishing Company Ltd(2003) New Delhi.
- 3. R. Chang, *Basic principles of spectroscopy*, International student edition, copyright (1971) McGraw Hill Kogakusha Ltd.

- 4. G.Herzberg, D.Van nostrand Co., Inc., *Infrared and Raman spectroscopy*, 2nd edition van Nostrand Company, New York.
- 5. S. L Gupta, V. Kumar and R. C. Sharma- Pragathi Prakashan, *Elements of spectroscopy*, (2003) Meerut.
- 6. B. B. Laud, Lasers and Non-Linear Optics, Edition. John Wiley & Sons, Inc. (1996) New York.

ELECTRONICS (SPECIAL) - II MICROCONTROLLER AND COMMUNICATION SYSTEM (For students admitted from June 2008)

Semester – IV Course code: 082PY4M02 Hours/week: 6 Credits:4

UNIT 1: 8086 ARCHITECTURE

Architecture – Minimum and maximum mode – BIU – EU – Segmentation of memory – Pipe line processing – Interrupt types and 8086 response – Internal interrupts – Interrupt priorities - NMI

UNIT 2: 8086 PROGRAMMING

Software model – Addressing modes – Instruction set - Programming: Block transfer – Averaging a set of data – Linear selection of 16 bit signed binary numbers – Factorial of a byte – Code conversion: binary to BCD and BCD to binary – Use of MASM.

UNIT 3: MICROCONTROLLER & INTERFACING:

Introduction to 8 & 16 bit microcontroller families – Flash series - Architecture of 8051 – Key features – Memory organization (internal & external) – SFR – Timers and counters – Instruction set – SFR bit addresses – Addressing modes – Simple programs.

Interfacing I/O ports, external memory, counters and timers – Interfacing 8051 with ADC, DAC, LED display, keyboard and stepper motor.

UNIT 4: EMBEDDED MICROCONTROLLER

Basics - Embedded microcontroller system – Types of embedded operating system – micro chip PIC16C6X/7X family – Features – Architecture – Memory organization – Register file map – I/O ports – Data and flash program memory – Asynchronous serial port – Applications in communication and industrial controls.

UNIT 5: SIGNAL ANALYSIS:

Fourier transform of gate function, delta function at the origin - Two delta functions and periodic delta function - Properties of Fourier transform - Frequency shifting property and time shifting property - Convolution theorems - Sampling theorems.

PULSE COMMUNICATION:

Pulse amplitude modulation - Natural sampling - Instantaneous sampling - Pulse modulation: PAM, PWM, PPM, and PCM - Time division multiplexing and frequency division multiplexing -Comparison of time division and frequency division multiplexing.

UNIT 6: SATELLITE COMMUNICATION

Introduction - Satellite orbits - Satellite altitude - Transmission path - Path loss - Noise consideration - Satellite systems - Effective isotropic radiated power.

OPTICAL COMMUNICATION:

Propagation with in fiber - Classification of fibers - Modes of propagation - Losses in fibers - Dispersion in optical fibers - Advantages and disadvantages - Hartley Shannon theory – Noise-Signal ratio - Channel capacity.

Books for Study:

- 1. Doughlas V Hall, *Microprocessor and interfacing, programming and hardware*, Tata McGraw Hill Publications, New Delhi.
- 2. Kenneth J. Ayala, *The 8051 Microcontroller*, 3rd edition, Penram international (1997)
- 3. Frank Vahid And Tony Givargis, Embedded system design, John Wiley & Sons, Inc.(2005).

4. John B. Peatman, *Design with PIC Microcontrollers*, 7th Indian reprint (2004), Pearson education.

Books for Reference:

- 1. Walter A Triebel And Avtar Singh, *16 bit microprocessor architecture, software and interface techniques*, 2nd printing, Prentice Hall Inc., Englewood Cliffs,(1996) New Jersey.
- 2. B.P.Lathi, Communication systems, B.S Publication 1968.Reprint (2001).
- 3. George Kennedy, Electronic Communication systems
- 4. Dennis Roddy And John Coolen, *Electronic communications*, 4th edition, Prentice Hall of India Pvt Ltd.,(1998) New Delhi.
- 5. Raj Kamal, *Introduction to Embedded system*, 2nd printing, Pearson Education, (2005).