DEPARTMENT OF STATISTICS

CHOICE BASED CREDIT SYSTEM (CBCS) Learning Outcome-based Curriculum Framework (LOCF) SYLLABUS

Bachelor of Science

2023 - 2024

MADRAS CHRISTIAN COLLEGE (AUTONOMOUS) College with Potential for Excellence Affiliated to University of Madras Tambaram Chennai – 600 059

MADRAS CHRISTIAN COLLEGE

VISION

Madras Christian College aspires to be an Institution of excellence transforming lives through education with a commitment to service.

MISSION

Madras Christian College (MCC) with the inspiration of the love of God offers to people of all communities education of the whole person, which is congruous with God's revelation in Christ of the true nature of humanity and is appropriate to the needs of India and of the world.

Graduate Attributes

The Madras Christian College defines the philosophy underpinning its academic programmes and student life experience on campus through the Graduate Attributes (GA), that describe the knowledge, competencies, values and skills students imbibe for holistic development and contribution to society. These attributes encompass characteristics that are transferable beyond the domain of study into the national and international realm fostered through curricular, co-curricular and extra-curricular engagements.

GA 1: Intellectual Competencies

- Graduates of MCC have a comprehensive and incisive understanding of their domain of study as well as the capability for cross-disciplinary learning.
- They have the ability to apply the knowledge acquired through the curriculum as well as self-directed learning to a broad spectrum ranging from analytical thinking to synthesise new knowledge through research.
- Forming independent individual opinions regarding academic cores and socially relevant issues

GA 2: Professional Ethics

- Graduates of MCC develop ethical and professional behaviour, which will be demonstrated in their chosen careers and constructive citizenship roles.
- They imbibe intellectual integrity and ethics in scholarly engagement and develop a spirit of inclusiveness through interactions with people of special needs and diversity.

GA3: Leadership Qualities

- Graduates of MCC inculcate leadership qualities & attitudes, and team behaviour along democratic lines through curricular, co-curricular and extracurricular activities
- They develop managerial and entrepreneurial skills to ideate and create new opportunities along with career readiness and capacity to take up various competitive exams.

GA 4: Holistic Skill Development

- Graduates of MCC develop critical thinking, problem-solving, effective communication, emotional and social skills
- They develop digital competency to live, learn and serve in society.

GA 5: Cross-Cultural Competencies

- Graduates of MCC imbibe cross-cultural competencies through engaging with diverse linguistic, ethnic and religious communities providing scope to understand, accept and appreciate individuals at local, national and international levels.
- They develop a global perspective through contemporary curriculum, culture, language and international exchange programmes

GA 6: Service-Oriented Focus

- Graduates of MCC have sensitivity to social concerns and a conviction toward social justice through a commitment to active social engagement.
- They are endowed with a strong sense of environmental awareness through the curriculum and campus eco-system.

GA 7: Value-Based Spiritual Development

- Graduates of MCC are rooted in the principles of ethical responsibility and integrity permeated with Christian values leading to the building of character.
- They develop virtues such as love, courage, unity, brotherhood, industry and uprightness.

Programme Outcomes

Programme Outcomes (POs) of Madras Christian College define the minimum level that students are expected to do, achieve and/or accomplish in order to graduate from a particular programme. These Outcomes are a framework to assess the nature of learning activity experienced within the programme.

POs for Under Graduate Programmes

UG Programmes are designed to have the following outcomes:

On successful completion of the Undergraduate programme, the students will be able to

РО	РО	Descripton of PO	Mappedwith GA
PO 1	Language Skills	 Demonstrate oral and written skills to effectively communicate in English and Languages of their choice Apply reading and listening skills to facilitate access to knowledge resources and understanding 	GA1, GA4, GA5
PO 2	Domain Knowledge	 Acquire knowledge of basic concepts, theories and processes through study of core courses in respective programmes Apply and Analyze domain specific knowledge to emerging areas of academia and industry Assess, adapt and develop domain specific transferrable skills to new/unfamiliar context 	GA1, GA3, GA4, GA5
PO 3	Interdisciplinary knowledge	 Identify and determine relationships across disciplines Acquire and apply 	GA1, GA4

		r		
			interdisciplinary	
			knowledge for holistic	
			academic development	
POA	Digital Skills	•	Acquire computer	GAL GA2 GA3 GA4 GA6
10 4	Digital Skills	•	ability and their	0111, 0112, 0113, 0114, 0110
			skills and their	
			application relevant to	
			classroom and self-	
			directed web-based	
			learning	
		•	Familiarize with and	
			use domain related	
			software resources,	
			computational skills	
			and digital tools for	
			data analysis,	
			visualization and	
			interpretation	
		•	Ethically apply digital	
			skills to creatively	
			communicate a wide	
			range of ideas and	
			interest in the second	
			issues related to	
			academic experiences	
PO 5	Analytical skills	•	Develop the ability to	GA1, GA2, GA4, GA6
			think critically and	
			relate learning to	
			academic, professional	
			and real-life problem	
			solving	
			Apply empirical	
			knowledge and skills to	
			identify and collect	
			quantitative and	
			qualitative data to	
			analyze and formulate	
			evidence-based	
			suggestions and	
			solutions	
PO 6	Academic writing &	•	Formulate and	GA1, GA4, GA5
	Presentation skills		document results	,, ~
			obtained in laboratory	
			cono studios project	
			case studies, project	
			work, field work and	
			internships	
		•	Effectively	
			communicate through	
			engaging presentations	

			using methodologies	
			appropriate to the	
			discipline	
DO 7		-	Domonstrato	
PO /	Innovation and Creativity	•	Demonstrate	GAI, GA2, GA3
			transferable capabilities	
			and intrapreneurial	
			skills that are relevant	
			to the industry and	
			other employment	
			opportunities	
		•	Develop	
			entrepreneurial skills	
			and somewhat	
			and generate	
			intellectual property	
PO 8	Social Engagement and	•	Demonstrate the	GA1, GA2, GA5, GA6, GA7
	Responsibility		ability to link	
			classroom learning	
			with social concerns	
			through service	
			learning and outreach	
			programmes.	
		•	Enhance positive	
			personality traits to	
			adapt to changing	
			circumstances and	
			demonstrate leadership	
			qualities as an	
			individual and a	
			member of gross	
			inember of cross-	
			cultural and multi-	
			disciplinary teams.	
		•	Appreciate	
			environmental	
			consciousness and	
			sustainability	
		•	Draw valuable insights	
			from one's own	
			spiritual tradition and	
			that of others for	
			peaceful coexistence	
			and general wellbeing	

PROGRAM SPECIFIC OUTCOMES (PSO's)

At the time of under graduation they would be able to:

PSO	Statement	Mapped with PO
DSO1	Understanding the Mathematical and Theoretical	PO2
P301	foundations of Statistics	
DSOJ	Acquiring skills to statistically model the problem and	PO2, PO5, PO6, PO7
P502	validate the model	
	Identifying the statistical tools appropriate for the	PO4, PO5, PO7
P505	problem and analyzing using statistical software	
	Interpreting results and drawing conclusions relevant to	PO3, PO6, PO7
P304	the field	
	Enabling the students to pursue Master Degree in other	PO3, PO8
	disciplines such Data science and Data analytics, Business	
PSO5	Administration, Computer Applications etc., in addition	
	to Statistics and contribute to the development in	
	Statistics	

Seme	Part	Course code	Course title	Instructio	Duration	Marks		Credits	
ster				n hours	of exam	7.0.1			
				per Cycle	(in hours)	ICA	ESE	Total	
	Т		Language I	4		50	50	100	2
			English I	4	3	50	50	100	3
		231ST1M01	Descriptive Statistics	4	3	50	50	100	4
		2315T1M01	Mathematics for Statistics	4	3	50	50	100	4
Ι		2315T1M02	Maior Practical - I	2	5	50	50	100	-
	III	231ST1A01	Demography	4	3	50	50	100	4
		231ST2A02	Allied Practical - I	2	3			-	
	IV	231ST1G01	Introductory Statistics	4	3	50	50	100	2
	IV	201011001	Value Education-I	2	3	50	50	100	1
	I		Language-II	4	3	50	50	100	3
	П		English-II	4	3	50	50	100	3
	Ш	231ST2M01	Matrix Algebra	4	3	50	50	100	4
		231ST2M02	Probability and Random	•	5	50	50	100	
	III	2010120102	Variables	4	3	50	50	100	4
II	III	231ST2M03	Major Practical – I	2	3	50	50	100	2
	III	231ST2A01	Numerical Analysis	4	3	50	50	100	4
	III	231ST2A02	Allied Practical - I	2	3	50	50	100	2
	IV	231ST1G01	Introductory Statistics	4	3	50	50	100	2
	IV		Value Education-II	2	3	50	50	100	1
	Ι		Language-III	4	3	50	50	100	3
	II		English-III	4	3	50	50	100	3
	III		Real Analysis	4	3	50	50	100	4
	III		Distribution Theory	4	3	50	50	100	4
III	III		Major Practical - II	2	-	-	-	-	-
	III		Programming in C	4	3	50	50	100	4
	III		Allied Practical – II	2	-	-	-	-	-
	IV		Actuarial Statistics	4	3	50	50	100	3
	IV		Personality Development	2	-	-	-	-	-
	Ι		Language-IV	4	3	50	50	100	3
	II		English-IV	4	3	50	50	100	3
	III		Theory of Estimation	4	3	50	50	100	4
	III		Sampling Techniques	4	3	50	50	100	4
IV	III		Major Practical - II	2	3	50	50	100	2
1 V	ш		Data Analysis using SPSS and	4	3	50	50	100	4
			SQL	•	5	50	50	100	•
	III		Allied Practical – II	2	3	50	50	100	2
	IV		Environmental Studies	4	3	50	50	100	2
	IV		Personality Development	2	3	50	50	100	3
	III		Operations Research	5	3	50	50	100	5
	III		Testing of Hypothesis	5	3	50	50	100	4
	111		Applied Regression Analysis	5	3	50	50	100	4
V			Statistics using R language	5	3	50	50	100	4
			Major Practical – III	6	3	50	50	100	2
	IV		Total Quality Management	4	3	50	50	100	3
	IV		Computer Training	-	-	-	-	-	3
	III		Design of Experiments	6	3	50	50	100	5
	III		Applied Statistics	6	3	50	50	100	4
VI	III		Stochastic Processes	6	3	50	50	100	4
			Programming in Python	6	3	50	50	100	4
			Major Practical IV	6	3	50	50	100	3
	V		Extension Activity	-	-	-	- /T		140
			LOTAL HOURS	100			10	a credit	140

Curriculum Template for (B.Sc. Statistics)(Effective from 2023-24)

Curriculum Overview Table							
Part	Credits	Hours / Cycle					
I - Language	3+3+3+3= 12	4+4+4=16					
II - English	3+3+3+3= 12	4+4+4=16					
III – Core theory (mandatory)	8+8+8+8+17+17= 66	8+8+8+8+20+24=76					
III – Core Practical	0+2+0+2+2+3= 9	2+2+2+2+6+6=20					
III – Allied Theory	4+4+4=16	4+4+4=16					
III – Allied Practical	0+2+0+2=4	2+2+2+2=8					
IV – GC	2+2=4	4+4 =8					
IV – GE	3	4					
IV – Value Education	1+1=2	2+2=4					
IV – ID	3	4					
IV – EVS	2	4					
IV – Computer Training	3	-					
IV – Personlaity Development	3	2+2 =4					
V – Extension Activity	1	-					
Total	140	180					

CURRICULUM OVERVIEW TABLE

Course code	Course title Type of			
Somester I		Change	Change	
231ST1M01	Major Descriptive Statistics	Porrisod	10	
231ST1M01	Major: Mathematics for Statistics	Revised	10	
231ST2M03	Major: Major Practical I	Revised	10	
231ST1A01	Wajor Wajor Fractical - 1	Revised & Title	10	
2510111101	Allied: Demography	changed	10	
231ST2A02	Allied: Allied Practical - I	New Course	100	
231ST1G01	General Course: Introductory Statistics	Revised	10	
Semester-II				
231ST2M01	Major:Matrix Algebra	Revised	10	
231ST2M02	Major:Probability and Random Variables	Revised	10	
231ST2M03	Major:Major Practical – I	Revised	10	
231ST2A01	Allied: Numerical Analysis	New Course	100	
231ST2A02	Allied: Allied Practical - I	New Course	100	
231ST1G01	General Course: Introductory Statistics	Revised	10	
Semester-III	<u>.</u>		<u>.</u>	
	Major:Real Analysis	Revised	30	
	Major:Distribution Theory	Revised	10	
	Major:Major Practical - II	Revised	10	
	Allied:Programming in C	Revised	10	
	Allied: Allied Practical – II	New Course	100	
	Inter-Disciplinary: Actuarial Statistics	Revised	30	
Semester-IV				
	Major: Theory of Estimation	Revised	30	
	Major:Sampling Techniques	Revised	10	
	Major:Major Practical - II	Revised	10	
	Allied: Data Analysis using SPSS and SQL	Revised & Title	50	
		changed	50	
	Allied: Allied Practical – II	New Course	100	
Semester-V				
	Major:Operations Research	Revised	10	
	Major: Testing of Hypothesis	Revised	10	
	Major: Applied Regression Analysis	Revised & Title	10	
		changed	10	
	Major:Statistics using R language	Revised	10	
	Major:Major Practical – III	New Course	100	
	General Elective: Total Quality Management	Revised	50	
Semester-VI	-	-	-	
	Major:Design of Experiments	Revised	10	
	Major: Applied Statistics	Revised	10	
	Major:Stochastic Processes	Revised	10	
	Major:Programming in Python	New Course	100	
	Major:Major Practical IV	Revised	30	
	Total perce	ntage of Changes	33.24	

B.Sc. Statistics -Syllabus Revision Details

SEMESTER-I

DESCRIPTIVE STATISTICS

Course Code		231ST1M01					
C	redits	4					
Hour	s / Cycle	4					
Ca	tegory	Part-III	Core	Т	heory		
Sei	mester	Ι					
Y	ear of	From the acad	demic year 2023_2024	onwards			
Imple	mentation						
		1. To nurture	the basics in Statistic	al Analysi	is.		
Course	Objectives	2. To visualize	e the numerals in to c	harts and	grapl	18.	
	1	3. To acquire	knowledge on the ba	sic tools f	or dat	a analysis.	
60				PSC)	Bloom's Taxonomy Levels	
CO		Course Outc	ome(s)	Addres	sed	(K1 to K6)	
On com	pleting the o	course successf	ully, the student will l	be able to			
CO 1	Define the	measurement s	cales and show the	PSO	1	K1	
	information	n in to numeral	s in the form of				
	frequency of	distribution and	l graphical				
	representat	tion.					
CO2	Understand	d and illustrate	the measures of	PSO	1	K2	
	central ten	dencies and dis	persions.		_		
CO3	Apply the c	co-efficient of va	ariation for	PSO	2	K3	
	comparing	the variables a	nd identify the				
	the company	t of alterrance as	stribution applying				
the concept of skewness and kurtosis.						K4	
004	U4 Compare the variables using correlation					K 4	
the attributes							
CO5	Design the	regression equ	ations and predicts	PSO	4	K5.K6	
	the values	of the variables.	anono una predicio	1.00	•		
	the values of the variables.						

SYLLABUS									
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL					
I	Statistics: An Overview – Measurement scale – nominal, ordinal, interval and ratio – Data Sources – Frequency distribution (Uni-variate and Bi-variate) – Types of data and Forms of Frequency Distributions – Cumulative and Relative Frequencies- Graphical representation of statistical data: Bar charts, Pie diagram, Histogram, Ogives – Line diagram -Stem and Leaf-Box plot	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6					
II	Measures of Central tendency: Arithmetic Mean – Weighted Arithmetic Mean - Median, Mode, Harmonic Mean, Geometric Mean – Quartiles, Deciles and Percentiles – Mathematical Properties.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6					
III	Measures of dispersion and their Properties: Range, Quartile deviation, Mean deviation (about mean, median and mode) – Variance and standard deviation (Ungrouped Data - Grouped Data) – Coefficient of Variation - Moments, skewness and kurtosis – Comparison of Measures - Change of Scale for a Frequency Distribution.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6					
IV	Simple correlation and regression : Introduction – Scatter diagram – Karl Pearson's coefficient of correlation – Properties of correlation coefficients - Spearman's rank correlation – Simple regression – Properties of regression coefficients.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6					
V	Association of Attributes – Order of classes and class frequencies – Relation between class frequencies – Consistency association – Comparison of observed and expected frequencies methods – Proportion method – Yule's coefficient of Association.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6					
Prescribe 1. Gupta, 2. Gupta, and Sons	ed Books/Textbooks S. P (2021) - 46 th Edition, Statistical Methods, Sultan Chang S. C and Kapoor, V. K (2020)- 12 th Edition, Fundamental o	d and Sons, N of Mathemati	Jew Delhi cal Statisti	cs, Sultan Chand					
References 1. Goon A M, Gupta M K, Das Gupta B(2013) - Fundamentals of Statistics, (Vol-I), The World Press (Pvt) Ltd., Kolkata. 2. Miller, Irwin and Miller, Marylees (2006): John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia. 3. Croxton, F.E. and Cowden, D.J. (1969) Applied General Statistics, Prentice Hall, New Delhi Suggested Reading 1. Hoog, B V. McKean, I.W. and Craig, A T. (2013) Introduction to Mathematical Statistics (Seventh Edition)									
Pearson I 2. Spiegel (Fourth F	Education Ltd. , M.R., Schiller, J. and Srinivasan, R.A. (2012).Probability an Edition), McGraw- Hill Publishing Company, New Delhi	ld Statistics, S	chaum's (Dutline Series					

Web Resources

1.<u>https://cbseacademic.nic.in//web_material/Manuals/appliedmaths/chapter10_Descriptive_Statistics.pdf</u> 2. <u>https://online.stat.psu.edu/stat462/node/89</u> 3.<u>https://sscc.wisc.edu/sscc/pubs/RegressionDiagnostics.html</u>

Course Articulation Matrix														
Course	Programme Outcomes							P	rogramm	e Specifio	c Outcom	ies	Cognitive	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	-	-	-	-	2	-	-	-	-	K1
CO2	-	3	-	-	-	-	-	-	2	-	-	-	-	K2
CO3	-	-	-	-	3	-	-	-	-	2	-	-	-	K3
CO4	-	-	-	-	3	-	-	-	-	-	3	-	-	K4
CO5	-	-	-	-	3	-	-	-	-	-	-	3	-	K5,K6
Wt. Avg.	-	3	-	-	3	-	-	-	2	2	3	3	-	
								Over	all Manni	ing of the	Course	PC) -3	
	Overall Mapping of the Course PSO-2.5													

MATHEMATICS FOR STATISTICS

Cour	rse Code	231ST1M02							
C	redits	4							
Hour	s / Cycle	4							
Ca	tegory	Part-III	Core	Theory					
Sei	mester	Ι							
Y	ear of	From the acad	lemic year 2023_2024 o	onwards					
Imple	mentation								
Course	Objectives	 To gain kr To enhance acquired by the mathematics. It also ence employment, 	 To gain knowledge in basic concepts of differentiation and integration. To enhance the ability of learners to apply the knowledge and skill acquired by them to solve specific theoretical and applied problems in mathematics. It also encourages the students to develop a range of generic skill helpful in omployment internations in gooid activities. 						
СО		Course Outo	come(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)				
On com	pleting the c	course successfi	ully, the student will be	able to					
CO1	Recall the integration	basic concepts	of differentiation and	PSO1	K1				
CO2	Demonstra various typ	te differentiations of mathemat	on and integration for ical functions	PSO1 PSO2	К2				
CO3	Apply th integration theory	e concept of in Probabil	differentiation and ty and distribution	PSO2 PSO4	К3				
CO4	Compare the Beta functi	he relationship on, differential	between Gamma and equations	PSO2 PSO4	K4				
CO5	Bulid mathematic the better mathematic	nematical know understanding cal science	vledge and skills for g of statistics as a	PSO2 PSO4	K5,K6				

	SYLLABUS							
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL				
I	Successive Differentiation – Partial differentiation – Maxima and minima of functions of two variables.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5				
II	Integration – simple problems - rational function- irrational function - integration by parts.	14	CO1 CO2 CO3 CO4 CO5	K6 K1 K2 K3 K4 K5 K6				
III	Definite integrals - simple problems –Properties of definite integrals – Reduction formula -Bernoulli's formula	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6				
IV	Beta and Gamma functions : Definitions-Recurrence formula of Gamma functions – properties of Beta functions– Relationship between Beta and Gamma functions.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6				
V	Differential equations: Exact differential equations of first order - Differential equations of first order – Differential equations of second order with constant coefficients.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6				
Prescribe 1. Nara Publish	e d Books/Textbooks yanan, S and Manikavachagam Pillay, T. K (1998), Ancillar ers, Chennai.	y Mathematics	s, S. Viswa	nathan				
References 1. Duraipandian, P. and UdayaBaskaran, S. (2014): Allied Mathematics, Vol. – I&II,S.Chand& Company Pvt. Ltd. 2. Sudha, S (1998), Calculus, Emerald Publishers, Chennai 3. Vittal, P.R (2012). Allied Mathematics, Margham Publications.								
1. Shan 2. Shan	ti Narayan, Mittal, P. K. (2014), Differential Calculus, S. Ch ti Narayan, Mittal, P. K. (2014), Integral Calculus, S. Chan	nand. Id.						
1. <u>https</u> 2010 2. <u>https</u> 3. <u>https</u>	://ocw.mit.edu/courses/res-18-006-calculus-revisited-sing /pages/study-materials/ ://www.khanacademy.org/math/calculus-1 ://byjus.com/maths/integration/	<u>le-variable-cal</u>	culus-fall-					

	Course Articulation Matrix													
Course			Prog	gramme	Outcom	nes			Programme Specific Outcomes					Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	-	-	-	-	2	-	-	-	-	K1
CO2	-	3	-	-	2	2	2	-	2	3	-	-	-	K2
CO3	-	3	3	-	2	2	2	-	-	3	-	2	-	К3
CO4	-	3	3	-	2	2	2	-	-	3	-	2	-	K 4
CO5	-	3	3	-	2	2	2	-	-	3	-	2	-	K5,K6
Wt. Avg.	-	3	3	-	2	2	2	-	2	3	-	2	-	
Overall Mapping of the Course PO 2.4														
PSO-2.3														

DEMOGRAPHY

Cour	rse Code	231ST1A01									
C	redits	4									
Hour	s / Cycle	4									
Ca	tegory	Part III	Allied			Theory					
Sei	mester	Ι									
Y	ear of	From the academic year 2023_2024 onwards									
Imple	mentation										
Course	Objectives	 To have the To study at Introductio 	 To have the knowledge about Vital Statistics. To study about Demography. Introduction to Growth Curves and their fitting. 								
СО		Course Outco	ome(s)		P Add	'SO ressed	Bloom's Taxonomy Levels (K1 to K6)				
On completing the course successfully, the student will be able to											
CO 1	Define H	ealth Statistic	s, Vital Sta	tistics,	Р	SO1	K1				
	Fertility, D	emography and	Growth Cur	ves.	PSO5						
CO2	Explain the	e different Me	asures of mo	rtality,	Р	SO1	K2				
	Life Tables	and Measures	of Fertility	-	P	SO 2					
CO3	Construct of	different types	Growth Curv	es and	Р	SO2	К3				
	fit them.	71			P	SO3					
					P	SO4					
CO4	Classify	and Analyz	edifferent	tyesof	Р	SO2	K4				
	Measures	of mortality a	ind Measu	res of	P	SO3					
	Fertility.	-			P	SO4					
CO5	Discuss	indetail	about	the	Р	SO1	K5,K6				
	Demograph	hy,Health Stat	istics and	Vital	P	SO2					
	Statistics.				P	SO5					

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Health Statistics: Introduction – Utilization of basic data - Sources of health statistics - Problems in the collection of sickness data - Measurements of sickness. Hospital statistics: Introduction – Terminology – Some Indices - International classification of diseases. Introduction to Sustainable Development Goals (SDGs) – Transition from Millennium Development Goals (MDGs) – What is 2030 Agenda? – 17 Sustainable Development Goals (SDGs) driving the global development agenda. Multi- level review processes and indicators - Ten principles for Global Monitoring Indicators – Key Indices – Multidimensional Poverty Index.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
II	Vital Statistics: Introduction – Use of Vital Statistics - Methods of Obtaining Vital Statistics – Basic formulae for calculation of vital statistics. Measures of mortality rates: Crude Death Rate - Specific death rate – Causes of death rate - Infant mortality rate - Neonatal mortality rate - Foetal death rate - Maternal Mortality rate Early Child Development Index (ECDI) – GNI per capita (PPP, current US\$ Atlas method) – Index on ICT maturity – Gini Coefficient – Human Mobility Governance Index – Global food loss index. Standardised Death rates: Direct and indirect standardization of death rates.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	. Measures of Fertility: Crude Birth Rate - General and specific fertility rates - General Marital Fertility Rate - Age specific fertility rate - Total fertility rate - Gross reproduction rate - Net reproduction rate. Life Tables: Introduction – Notations and Terminology – Expectation of Life – Stationary and Stable Populations – Central Mortality rate – Force of Mortality – Assumptions, Description and construction of life table - Uses of life tables.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Demography: Population growth - Age and sex composition - Dependency ratios – Demographic Transition - Population Estimation – Methods of Natural Increase Method – Arithmetic Progression Method – Geometric Progression Method- Comparison of the three methods.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	.Growth Curves and their fitting: Introduction – Least Square method - Linear growth curve - Modified exponential curve - Gompertz curve - Logistic curve	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks

- 1. Sundar Rao, P. S. S and Richard, J (1999), An Introduction to Bio-Statistics and Research Methods, Prentice Hall of India (IV Edition), PHI Publications, New Delhi. (Chapter 18, Chapter 19 & Chapter 21)
- 2. Gupta, S. C and Kapoor, V. K (2001), Fundamentals of Applied Statistics, Sultan Chand and sons, New Delhi. (Chapter 2: Section 2.4.3 & 2.4.4 and Chapter 9)
- 3. Baskar, D. Misra (2000), An Introduction to the Study of Population, South Asian Publishers Pvt. Ltd.

References

- 1. Indicators and a Monitoring Framework for the Sustainable Development Goals (2015). A report of the United Nations.
- 2. JH Lundquist, DL Anderton, D Yaukey (2014), Demography: The study of human population, Wave Land Press.
- 3. TB Gage, JM McCullough, CA Weitz,(1989), Demographic studies and human population biology, Oxford University Press.

Suggested Reading

- 1. Yaukey, David (1990) Demography : the study of human population, Waveland Press.
- 2. George Chandler Whipple(2017) Vital Statistics: An Introduction to the Science of Demography, Fb&cLimite

Web Resources

- 1. https://unstats.un.org/unsd/demographic/standmeth/principles/m19rev3en.pdf
- 2. <u>https://score.tools.who.int/fileadmin/uploads/score/Documents/Count_births_deaths_and_causes_of_death/Strengthening_CRVS_resource_kit/CRVS%20strengthening%20resource%20kit.pdf</u>
- 3. https://www.ctanujit.org/uploads/2/5/3/9/25393293/20 vital statistics.pdf

	Course Articulation Matrix													
Course			Pro	gramm	e Outco	mes			Programme Specific Outcomes					Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	-	2	2	-	-	-	-	2	3	-	-	-	2	K1
CO2	-	2	-	-	2	2	2	-	3	3	-	-	-	K2
CO3	-	2	3	2	3	3	3	-	-	3	2	3	-	K3
CO4	-	2	3	2	3	3	3	-	-	3	2	3	-	K4
CO5	-	2	2	-	2	2	2	2	3	3	-	-	3	K5, K6
Wt. Avg. - 2 2.5 2 2.5 2.5 2 3 3 2 3											3	3		
Overall Mapping of the Course PO- 2.2 PSO- 2.8														

INTRODUCTORY STATISTICS

Course Code 231ST1G01												
Credits		2										
Hours /	/ Cycle	4										
Categor	ry	Part-IV	General Course		Theory							
Semeste	er	Ι										
Year of		From the acad	From the academic year 2023_2024 onwards									
Implem	entation											
		1. To develop the basic concept and ability to deal with numerical and quantitative issues in business										
Course	Objectives	2. To enable the use of statistical, graphical and algebraic techniques wherever										
	,	relevant.										
		3. To have a p	3. To have a proper understanding of Statistical applications.									
60				I	PSO	Bloom's Taxonomy Levels						
co		Course Outed	Add	lressed	(K1 to K6)							
On com	pleting the c	course successfu	ılly, the student will	be able	e to							
CO 1	Define vari	ous methods of	collecting data and	Р	SO1	K1						
	get familia	r with some eler	mentary methods of									
	data viz.	Measures of	central tendency,									
	dispersion,	skewness and	kurtosis, correlation									
<u> </u>	and regress	and to inter	pret them.	n	1001	K.)						
	continuous	frequency	distribution and		SO1	K2						
	Pictorial R	enresentation of	distribution and f data	I	302							
CO3	Construct	the statisti	cal analysis of	· p	503	K3						
005	descriptive	statistics and in	iferential statistics	P	SO4							
<u> </u>	Diamon an			- -	<u>so</u> :							
004	Discuss cr	incany the uses	and limitations of		SU3	K4						
CO5	Solve o	range of pro	bleme using the	ם ר	SO4	K5 K6						
005	techniques	covered Cond	uct basic statistical	I P	SO4							
	analysis of	data.	act suble statistical	P	SO5							

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Introduction: Definition of Statistical data, Statistical methods, Functions of Statistics-Applications of Statistics.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
Ш	Collection of Data: Method of collecting primary and secondary data – census, sampling methods – Lottery method - Table of random numbers – Essentials of sampling.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	Pictorial Representation of data: Bar diagrams – Pie diagrams – Histogram – Ogives.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Classification : Types of classification – Formulation of discrete and continuous frequency distribution – Measures of Location : Mean, Median, Mode, Quartiles – Measures of variation: Variance and Standard deviation.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Simple correlation and regression : Introduction, Scatter diagram, Karl Pearson's coefficient of correlation - rank correlation - simple regression - Attributes and association of attributes	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks

- 1. Everson, M., Gundlach, E., & Miller, J. (2013). Social media and the introductory statistics course. Computers in Human Behavior, 29(5), A69-A81.
- 2. Gun, A. M., Gupta, M. K., & Dasgupta, B. (2013). Fundamentals of statistics. World Press Private.
- 3. Gupta, S. C., & Kapoor, V. K. (2020). Fundamentals of mathematical statistics. Sultan Chand & Sons. **References**
- 1. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2004). SPSS for introductory statistics: Use and interpretation. Psychology Press.
- 2. Illowsky, B., & Dean, S. (2018). Introductory statistics.
- 3. Minton, P. D. (1988). Introductory Statistics.
- 4. DeShea, L., & Toothaker, L. E. (2015). Introductory Statistics.

Suggested Reading

- 1. Mann, P. S. (2007). Introductory statistics. John Wiley & Sons.
- 2. Quenouille, M. H. (2014). Introductory statistics. Elsevier.
- 3. Rumsey, D. J. (2002). Statistical literacy as a goal for introductory statistics courses. Journal of statistics education, 10(3).

Web Resources

- 1. <u>https://youtu.be/IngKIlvpg3s</u>
- https://youtu.be/74oUwKezFho
 https://youtu.be/Ge9je05uYJ0
- 4. https://youtu.be/lBB4stn3exM
- 5. <u>https://youtu.be/_0rEKoYExLw</u> 6. <u>https://youtu.be/Q6qU2i9qu28</u>

	Course Articulation Matrix													
Course			Pro	gramme	Outcor	nes			Programme Specific Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	2	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	2	-	-	2	2	2	-	2	2	-	-	-	K2
CO3	-	-	2	2	2	2	2	-	-	-	2	2	-	K3
CO4	-	-	2	2	2	2	2	-	-	-	2	2	-	K4
CO5	-		2	2	2	2	2	2	-	-	2	2	2	K5,K6
Wt. Avg. - 2<											-			
Overall Mapping of the Course PO- 2														
	PSO-2.1													

SEMESTER-II

MATRIX ALGEBRA

Course Code ^{231ST2M01}											
C	redits	4									
Hour	s / Cycle	4									
Ca	tegory	Part-III	Core		Theory						
Sei	mester	II									
Y	ear of	From the academic year 2023_2024 onwards									
Impler	mentation	-									
	~	 To study the basic operations of matrices To learn methods for solving systems of linear equations using matrix 									
Course	Objectives	method									
		3. To acquire	e competence in algel	braic n	nethods i	involving Eigen values and					
		Eigen vectors	and quadratic forms.								
СО		Course Outco	ome(s)	P	SO	Bloom's Taxonomy Levels					
			(-)	Add	ressed	(K1 to K6)					
On com	pleting the c	course successfu	ully, the student will h	be able	to						
CO1	Label basic	c concepts of ma	atrix algebra	Р	SO1	K1					
CO2	Demonstra	te types of ma	trix, types of linear	P	SO2	K2					
	equation		• -	P	SO4						
CO3	Choose a	ppropriate m	atrix for finding	P	SO2	К3					
	characteris	tic roots and	vectors, quadratic	P	SO4						
	forms										
CO4	Apply cond	epts of matrix,	quadratic forms in	P	SO2	K4					
	real life pro	blems		P	SO4						
0.0.5		<u> </u>		P	<u>SO5</u>						
CO5	Recommer	id appropriate t	ype of matrix to be	be PSO2 K5,K6							
	used in vec	tor space and q	uadratic forms.		SO4						
				P3	SO5						

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Matrix Algebra : Definition – Types of Matrices - Rectangular – Square – Null - Identity – Diagonal – Scalar-Triangularmatrices-AlgebraofMatrices:Addition- Scalar multiplication-Multiplication of matrices – Properties of Matrix addition - Multiplication – Conjugate matrices – Transpose and Transjugate matrices – Trace of a matrix – Symmetric, Skew- symmetric, Hermitian, Skew-Hermitian, Orthogonal, Unitary, Idempotent, Nilpotent matrices and their properties.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
II	Adjoint and inverse : Adjoint matrices – Properties – Inverse of a matrix – Properties – Elementary transformations–Minor and cofactor of a matrix- Methods of finding inverse : Adjoint and elementary transformation methods-Matrix representation of a set of equations- Solutions of simultaneous equations using matrix inverse method.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	Rank of a matrix : Definition– Normal form – Use of rank concepts – Linear homogeneous and non homogeneous equations–Consistency of equations – Solutions for linear equations.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Characteristic Roots and Vectors: Definition – Characteristic roots of Null, Identity, Scalar, Diagonal, Upper triangular, Lower triangular matrices – Characteristic roots of adjoint and inverse of a matrix – Properties of characteristic roots – Characteristic vectors and their Properties.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Quadraticforms : Definition – Reduction of QFs to canonical forms – Congruent and Lagrange reductions– Index and Signature of QFs. Vector spaces: Definition- Examples- Simple algebraic properties of a vector space – Basis and Dimensions- Linear dependenceof vectors.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks

1. Gupta,S.C(2018), AnIntroductiontoMatrices,SultanChandandSons,New Delhi.

References

- 1. Vasishtha.A.R (1972) : Matrices, KrishnaprakashanMandir, Meerut.
- 2. Vatsa, B. S and Vatsa, S (2014), Theory of Matrices, New Age International Publishers, Third edition, New Delhi, India.
- 3. ShanthiNaryanan (2012), A TextBook of Matrices, SultanChand and Sons, Ninth edition, Delhi.

Suggested Reading

- 1. Hohn, F. E, (2012), Elementary Matrix Algebra, Statistical Methods, 3rd Edition, DoverPublications.
- 2. Aggarwal, R.S,(1987), A text book on Matrices, 4th Edition, Sultan Chand & Sons, NewDelhi.
- 3. Richard Bronson, (2005), Theory and Problems of Matrix Operations, Tata McGrawHill.

Web Resources

- 1. https://www.math.pku.edu.cn/teachers/anjp/textbook.pdf
- 2. https://samples.jbpub.com/9781556229114/chapter7.pdf
- 3. http://www.math.nagoya-u.ac.jp/~richard/teaching/f2014/Lin_alg_Lang.pdf

*Please avoid numerical problems involving calculators as they are done in Major Practical

Course Articulation Matrix														
Course			Prog	gramme	Outcom	es			Programme Specific Outcomes					Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
CO 1	-	3	-	-	-	-	-	-	2	-	-	-	-	K1
CO 2	-	3	2	-	2	2	2	-	-	3	-	2	-	K2
CO 3	-	3	2	-	2	2	2	-	-	3	-	2	-	K3
CO 4	-	3	2	-	2	2	2	2	-	3	-	2	2	K4
CO 5	-	3	2	-	2	2	2	2	-	3	-	2	2	K5,K6
Wt. Avg.	-	3	2	-	2	2	2	2	2	3	-	2	2	
Overall Mapping of the Course PO -2.17														
PSO -2.25														

PROBABILITY AND RANDOM VARIABLES

Course Code 231ST2M02												
C	redits	4										
Hour	rs / Cycle	4										
Ca	tegory	Part	III	Core			Theory	7				
Sei	mester	II										
Y	ear of	From	the aca	demic year	2023_2024	onwar	rds					
Imple	mentation											
Course	Objectives	1. To 2. To theory 3. To rando	 To introduce probability's fundamental ideas. To develop the logical foundation and analytical thinking of probability theory To demonstrate the abilities required to resolve real-world probability and random variable problems. 									
СО		Cour	se Outc	come(s)		P Add	PSO ressed	Bloom's Taxonomy Levels (K1 to K6)				
On com	On completing the course successfully, the student will be able to											
CO1	Recall the events, esta compute probability	essent ablish f probabi	ial idea fundam ilities u	as of proba ental theore using the	ability of ems, and rules of	Р	SO1	K1				
CO2	Recognise, on conditi ideas to tac	use, an onal p kle pra	nd prov robabili ctical is	e the theore ty. To app sues.	em based bly these	P P	SO1 SO2	K2				
CO3	Utilise the different k probability kinds.	idea of inds. Io functio	randon dentifyi on that	n variables ng the trai correspond	and their ts of the to these	P P	SO2 SO3	K3				
CO4	Investigate expectation establishin unconditio	the ide n, demo g the co nal and	ea of ma onstratir onnectio conditi	thematical ng its attribu on between ional expect	ites, and	P P P P	SO2 SO3 SO4 SO5	K4				
CO5	Use various probability Cauchy-Scl and their us probabilitie	s genera distrib hwartz, ses in d es.	ating fu ution m Chebyo letermir	nctions, cal oments. Do chev's inequ ning actual	culate escribe nality,	P P P P	SO2 SO3 SO4 SO5	K5,K6				

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Basic concepts of Probability - Trial, Events, Random Experiments, Sample space- Classical and empirical approach to probability and their limitations –Types of events: Exhaustive, Mutually exclusive, Equally likely and Independent events - Axiomatic approach to probability - Basic theorems on probability using axiomatic approach - Addition theorem on probability for <i>n</i> -events, Boole's inequality.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
II	Conditional probability – Multiplication theorem on probability for n-events. Independence of events –Pair- wise independence and mutual independence – Bayes' theorem and Simple applications.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	Random variables: Discrete and continuous random variables - Probability mass function and probability density function- Bi-variate random variables: Joint probability density function -Marginal and conditional density functions - Stochastic independence.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Mathematical expectation - Variance, Covariance and their properties - Marginal and -conditional expectations - Conditional variances Correlation - Relationship between unconditional and conditional expectations.	13	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Moment generating function and its properties - Cumulant generating function- Characteristicfunction - Probability generating functions (Concepts only) - Cauchy-Schwartz Inequality and its applications - Chebyshev's Inequality and its applications.	13	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks(1-5 books)

- 1. Gupta, S.C and Kapoor, V. K (2002), Fundamentals of Mathematical Statistics, SultanChand and Sons, New Delhi.
- 2. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009): Probability and Statistical Inference, Seventh Ed, PearsonEducation, New Delhi.
- 3. Lipshutz, S, Lipson, M & Jain, K. (2017): Schaum's Outlines Series on Probability

References

- 1. Hogg, R. V and Craig, A. T (2006), Introduction to Mathematical Statistics, Pearson Education, New Delhi.
- 2. Saxena, H. C (1968), Statistical Inference, Sultan Chand and Sons, New Delhi.
- 3. Rohatgi, V.K. and Saleh, A.K.Md.E. (2002): An introduction to probability and Statistics, John Wiley andSons.
- 4. Sanjay Arora & Bansilal (1989): New Mathematical statistics, Meerat Publications, New Delhi

Suggested Reading

- 1. Meyer, P.L.(1970) : Introduction to Probability and Statistical Applications, 2nd edition, Addison-Wesley.
- 2. Irwin Miller and Marylees Miller (2006): John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia

Web Resources (3-5)

- 1. https://www.khanacademy.org/math/statistics-probability/random-variables-stats-library
- 2. https://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf
- 3. https://www.econometrics-with-r.org/2-1-random-variables-and-probability-distributions.html
- 4. https://www.mathsisfun.com/data/random-variables.html

Course Articulation Matrix														
Course Outcomes	Programme Outcomes Programme Specific Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	2	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	2	-	-	3	2	2	-	3	1	-	-	-	K2
CO3	-	-	-	2	3	-	2	-	-	3	2	-	-	К3
CO4	-	-	2	-	-	2	2	-	-	2	3	3	3	K4
CO5	-	-	2	-	-	-	-	2	-	1	2	3	3	K5,K6
Wt. Avg.	-	2	2	2	3	2	2	2	3	1.75	2.3	3	3	
Overall Mapping of the Course PO - 2.14 PSO-2.61														

MAJOR PRACTICAL – I

Course Code		231ST2M03										
Credits		2										
Hours / Cycle		2										
Ca	tegory	Part III	Core	P	ractica	1						
Sei	mester	I & II	I & II									
Y	ear of	From the academic year 2023_2024 onwards										
Imple	mentation											
		1. To present	the data in a consolid	ated form	ı							
Course	Objectives	2. To describe the univariate and Bivariate characteristics of the data set.										
	1	3. To perform	matrix operations an	d arriving	g soluti	ions to linear equations.						
<u> </u>			ome(s)	PSC		Bloom's Taxonomy Levels						
CO		Course Oute	onic(s)	Addres	sed	(K1 to K6)						
On com	On completing the course successfully, the student will be able to											
CO1	Remember	how to repres	ent data in the form	PSO	1	K1						
	of frequence	cy distribution		PSO	2							
CO2	Understand	d the graphica	al representation of	PSO	1	K2						
	data	01	•	PSO	2							
CO3	Apply diffe	erent types of d	lescriptive measures	PSO2 K3								
	for the give	en data		PSO	4							
CO4	Distinguisl	h and to perfo	orm simple analysis	PSO	K4							
	for qu	alitative a	nd quantitative	PSO	4							
	characteris	tics.	-									
CO5	Evaluate t	he operations	on matrices and to	PSO	1	K5,K6						
	find chara	cteristic roots	and vectors for the	PSO	2							
	given matri	ix		PSO	4							

EXCERICES

- 1. Formulation of Univariate frequency distribution.
- 2. Formulation of Bivariate frequency distribution
- 3. Calculation of Mean, Median, Mode (Raw and Grouped data)
- 4. Calculation of Harmonic mean, Geometric mean (Raw and Grouped data)
- 5. Graphical representation of Median and Mode
- 6. Quartiles, Deciles and Percentiles
- 7. Calculation of range and quartile deviation
- 8. Mean deviation about mean, median
- 9. Standard deviation, variance and coefficient of variation
- 10. Moments, Skewness and Kurtosis
- 11. KarlPearson's coefficient of correlation (Raw data)
- 12. KarlPearson's coefficient of correlation (Grouped data)
- 13. Spearman's Rank correlation
- 14. Regression equations
- 15. Association of attributes
- 16. Multiplication of matrices
- 17. Inverse of a matrix of order upto [4x4]
- 18. Rank of a matrix by elementary operations.
- 19. Solution of linear equations
- 20. Characteristic roots and vectors

Course Articulation Matrix															
Course Outcomes	Programme Outcomes										Programme Specific Outcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level	
CO 1	-	2	-		2	2	2	-	2	2	-	-	-	K1	
CO 2	-	2	-	-	-	2	2	-	2	2	-	-	-	K2	
CO 3	-	2	2	-	2	2	2	-	-	2	-	2	-	K3	
CO 4	-	2	2	-	2	2	2	-	-	2	-	2	-	K 4	
CO 5	-	2	2	-	2	2	2	-	2	2	-	2	-	K5,K6	
Wt. Avg.	-	2	2	-	2	2	2	-	2	2	-	2	-		
Overall Mapping of the Course											PC PS	D-2 O-2			

NUMERICAL ANALYSIS

Course Code		231ST2A01									
Credits		4									
Hours / Cycle		4	4								
Ca	tegory	Part-III	Allied		Theory						
Sei	mester	II			ž						
Y	ear of	From the academic year 2023_2024 onwards.									
Imple	mentation										
Course Objectives		 To understand the concept of interpolation and extrapolation. To find solutions for linear and transcendental equations using numerical methods. To comprehend the concept of numerical differentiation and integration. 									
со		Course Outc	ome(s)	P Add	'SO ressed	Bloom's Taxonomy Levels (K1 to K6)					
On com	pleting the c	course successf	ully, the student will	be able	to						
CO1	Recognise	the role of nun	nerical mathematics	P	SO1	K1					
	in interpo	lation, extrapo	olation, solving of	P	SO2						
	equations,	differentiation	and integration.	P	SO4						
				P	SO5						
CO2	Relate to	the application	ions of numerical	P	SO1	K2					
	methods.			P	SO2						
				PSO4							
-				P	SO5						
CO3	Select an	appropriate nu	merical method to	P	SO 1	K3					
	solve the p	roblem.		PSO2							
				P							
				P	SO5						
CO4	Distinguisl	n between	interpolation and	P	SO 1	K4					
	extrapolation	on& equal and	unequal intervals.	P	SO2						
				PSO4							
				P	SO5						
CO5	Perceive th	e differences ir	n forward, backward	P	K5,K6						
	and central	difference form	nulae.	P	SO2						
				P	SO 4						
				P	SO5						

SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY							
T	Einite differences forward and backward difference	12	CO1								
1	Finite differences – forward and backward difference	15	CO1	KI K2							
	Newton's formend and backward differences formulas		CO_2	K2							
	Newton's forward and backward difference formulae		CO_{4}	KJ KA							
				K4 V5							
			COS	K5 K6							
п	Interpolation with unequal intervals Divided	10	CO1	K0 K1							
11	Differences Newton's Formula for Unequal Intervals	10	CO^{1}	K1 K2							
	Lagrange's Interpolation formula		CO_2	K2 K3							
	– Lagrange's interpolation formula.		CO_{4}	KJ KA							
			CO4	K5							
			005	K5 K6							
III	Central Difference Interpolation formulae – Gauss	14	CO1	K0 K1							
	Forward and Backward Interpolation formulae –	14	CO^2	K1 K2							
	Stirling's Bessel's and Laplace-Everett Interpolation		CO3	K3							
	Formulae.		CO4	K4							
			CO5	K5							
				K6							
IV	Inverse interpolation – Lagrange's formula – Solution	10	CO1	K1							
	to transcendental equations – Bisection and Newton-		CO2	K2							
	Raphson Method.		CO3	K3							
			CO4	K4							
			CO5	K5							
				K6							
V	Numeriacal Differentiation - Numerical Integration -	13	CO1	K1							
	Trapezoidal Rule – Simpson one third and three eighth		CO2	K2							
	rule.		CO3	K3							
			CO4	K4							
			CO5	K5							
				K6							
Prescribe	d Books/Textbooks a, H. C. (1988). <i>Finite Differences and Numerical Analysis</i> . S. C	hand Publishi	ng.								
Referenc	es										
1. Hildeb	and, F. B. (1987). Introduction to numerical analysis. Courier C	orporation.									
2. Sastry,	S. S. (2012). Introductory methods of numerical analysis. PHI Lea	rning Pvt. Lto	1.								
3. Mollah	, S. A. (2012). Numerical Analysis and Computational Proceed	ures. Publishe	r Arunabh	na Sen Books and							
Allied (I	P) Ltd.										
Suggeste	d Reading										
1. Gupta,	P. P., Gupta, S., & Malik, G. S. (1980). Calculus of finite diffe	rence & numeri	ical analysis.	Krishna							
Prakash	an Media.										
2. Kandas	amy, P., &Gunavathi, K. (2008). Numerical Methods Vol-IV	(Tamil Nadu).	S. Chand	Publishing.							
Web Res	ources	1.0									
1. <u>https:/</u>	/www.math.hkust.edu.hk/~machas/numerical-methods.p	<u>dt</u>									
2. <u>https:/</u>	/www.math.iitb.ac.in/~baskar/book.pdf		D (
3. <u>https:/</u>	<u>/blasingame.engr.tamu.edu/z_zCourse_Archive/P620_14</u>	<u>C/P620_14C</u>	zKeteren	<u>ce/PDF Txt Hn</u>							
<u>bk</u> Nur	n Meth.pdt										

Course Articulation Matrix														
Course Outcomes			Pro	gramme	Outcon	nes	Programme Specific Outcomes					Cognitive		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO 1	-	3	2	-	2	2	2	2	3	1	-	2	3	K1
CO 2	-	3	2	-	2	2	2	2	3	1	-	2	3	K2
CO 3	-	3	2	-	2	2	2	2	3	1	-	2	3	К3
CO 4	-	3	2	-	2	2	2	2	3	1	-	2	3	K4
CO 5	-	3	2	-	2	2	2	2	3	1	-	2	3	K5,K6
Wt. Avg.	-	3	2	-	2	2	2	2	3	1	-	2	3	
	Overall Mapping of the Course												- 2.17	
									11	0		PSO	-2.25	
ALLIED PRACTICAL – I

Cour	se Code	231ST2A02										
C	redits	2										
Hour	s / Cycle	2										
Ca	tegory	Part-III	Allied		Practical							
Sei	mester	I &II										
Y	ear of	From the a	cademic year 2023	3_2024 onw	vards							
Imple	mentation											
C Obj	ourse jectives	 To under Numerical To have Numerical To acquir 	 To understand the problem solving techniques used in Demography and Numerical analysis To have practical knowledge in solving problems in Demography and Numerical Analysis using MS-EXCEL To acquire knowledge about the applications of Demography . 									
СО		Course Outc	ome(s)] Ado	PSO Iressed	Bloom's Taxonomy Levels(K1 to K6)						
On con	npleting the	course succ	essfully, the stude	nt will be a	ble to							
CO1	Recall th	e basic for	mulas used in	ŀ	PSO1	K1						
	Demograp	hy and Num	nerical Analysis.	F								
CO2	Relate the	formulas to	the applications	F	SO2	K2						
	in Dem	ography a	nd Numerical	F	SO3							
	Analysis ir	n MS-EXCE	Ĺ									
CO3	Select an	appropriat	e technique to	F	SO3	K3						
	solve De	mography	and Numerical	F	SO4							
004	Analysis p	roblem taker	n for study									
CO4	Analyze th	e problem u	sing the selected	d PSO3 K4								
	technique	using MS –I	EXCEL									
005	Interpret t	ne findings	of the end result		503	К5,К6						
	for the pro	oblem taken	for study									
1				l I								

EXERCISES SEMESTER - I

Demography

- 1. Life tables.
- 2. Life tables
- 3. Fitting of Growth Curves : Linear growth curve
- 4. Fitting of Growth Curves :Exponential growth curve.
- 5. Fitting of Growth Curves :Exponential growth curve.
- 6. Fitting of Growth Curves : Modified exponential growth curve
- 7. Fitting of Growth Curves :Gompertz curve
- 8. Fitting of Growth Curves :Gompertz curve
- 9. Fitting of Growth Curves : Logistic curve
- 10. Fitting of Growth Curves : Logistic curve

SEMESTER - II

Numerical Analysis

- 1. Newton's Forward Interpolation
- 2. Newton's Backward Interpolation
- 3. Gauss Forward Interpolation
- 4. Gauss Backward Interpolation
- 5. Lagrange's Interpolation
- 6. Lagrange's Inverse Interpolation
- 7. Newton Raphson Method
- 8. Stirling's Interpolation
- 9. Bessel's Interpolation
- 10. Laplace-Everett Interpolation
- 11. Numerical Differentiation
- 12. Trapezoidal Rule
- 12. Simpson one third Rule
- 13. Simpson three eighth Rule

	Course Articulation Matrix													
Course Outcomes			Prog	gramme	Outcom	es			Programme Specific Outcomes					Constitue I and
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	1	-	2	3	-	2	-	2	-	2	-	-	K1
CO2	-	1	-	2	3	2	2	-	-	2	2	-	-	K2
CO3	-	-	2	2	3	2	2	-	-	-	2	2	-	K3
CO4	-	-	2	2	3	2	2	-	-	-	2	2		K4
CO5	-	-	2	2	3	2	2	2	-	-	2	2	2	K5, K6
Wt. Avg. - 1 2 2 3 2<														
Overall Mapping of the Course PO-2 PSO-2														

INTRODUCTORY STATISTICS

			-			
Course	Code	231ST1G01				
Credits		2				
Hours /	' Cycle	4				
Categor	y	Part-IV	General Course		Theory	
Semeste	er	II				
Year of		From the acad	lemic year 2023_2	024 onwa	rds	
Implem	entation		-			
Course	Objectives	 To develop and quantitati To enable t relevant. To have a p 	the basic conce we issues in busi he use of statistic	pt and a ness al, graphi ing of Sta	ability to cal and a tisticalap	deal with numerical lgebraic techniques wherever plications.
СО		Course Outco	ome(s)] Add	PSO dressed	Bloom's Taxonomy Levels (K1 to K6)
On com	pleting the c	course successfi	ully, the student w	ill be abl	e to	
CO1	Define var and get methods of tendency, of correlation them.	ious methods familiar with of data viz. M dispersion, skew and regressio	of collecting Ida some elementa leasures of centra wness and kurtos n and to interpr	nta F nry ral is, ret	°SO1	K1
CO2	Understand continuous Pictorial R	d the concept frequency epresentation of	t of discrete an distribution an f data.	nd F nd F	PSO1 PSO2	K2
CO3	Construct descriptive	the statisti statistics and in	cal analysis	of F s F	PSO3 PSO4	К3
CO4	Discuss cristatistical a	itically the uses malysis	and limitations	of F	PSO3 PSO4	K4
CO5	Solve a techniques	range of pro	blems using the the second sec	he F cal F	PSO3 PSO4	K5,K6

SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL							
I	Introduction: Definition of Statistical data, Statistical methods, Functions of Statistics-Applications of Statistics.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
Ш	Collection of Data: Method of collecting primary and secondary data – census, sampling methods – Lottery method - Table of random numbers – Essentials of sampling.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
III	Pictorial Representation of data: Bar diagrams – Pie diagrams – Histogram – Ogives.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
IV	Classification : Types of classification – Formulation of discrete and continuous frequency distribution – Measures of Location : Mean, Median, Mode, Quartiles – Measures of variation: Variance and Standard deviation.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
V	Simple correlation and regression : Introduction, Scatter diagram, Karl Pearson's coefficient of correlation - rank correlation - simple regression - Attributes and association of attributes	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							

Prescribed Books/Textbooks

- 4. Everson, M., Gundlach, E., & Miller, J. (2013). Social media and the introductory statistics course. Computers in Human Behavior, 29(5), A69-A81.
- 5. Gun, A. M., Gupta, M. K., & Dasgupta, B. (2013). Fundamentals of statistics. World Press Private.
- 6. Gupta, S. C., & Kapoor, V. K. (2020). Fundamentals of mathematical statistics. Sultan Chand & Sons. **References**
- 5. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2004). SPSS for introductory statistics: Use and interpretation. Psychology Press.
- 6. Illowsky, B., & Dean, S. (2018). Introductory statistics.
- 7. Minton, P. D. (1988). Introductory Statistics.
- 8. DeShea, L., & Toothaker, L. E. (2015). Introductory Statistics.

Suggested Reading

- 4. Mann, P. S. (2007). Introductory statistics. John Wiley & Sons.
- 5. Quenouille, M. H. (2014). Introductory statistics. Elsevier.
- 6. Rumsey, D. J. (2002). Statistical literacy as a goal for introductory statistics courses. Journal of statistics education, 10(3).

Web Resources

- 7. <u>https://youtu.be/IngKIlvpg3s</u>
- https://youtu.be/IngKIIvpg5s
 https://youtu.be/74oUwKezFho
 https://youtu.be/Ge9je05uYJ0
 https://youtu.be/IBB4stn3exM
 https://youtu.be/0rEKoYExLw
 https://youtu.be/Q6qU2i9qu28

	Course Articulation Matrix													
Course			Pro	gramme	Outcor	nes			Programme Specific Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	2	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	2	-	-	2	2	2	-	2	2	-	-	-	K2
CO3	-	-	2	2	2	2	2	-	-	-	2	2	-	К3
CO4	-	-	2	2	2	2	2	-	-	-	2	2	-	K4
CO5	-		2	2	2	2	2	2	-	-	2	2	2	K5,K6
Wt. Avg. - 2<												-		
Overall Mapping of the Course PO- 2														
PSO-2.1														

SEMESTER-III

REAL ANALYSIS

Course Code										
Credits	4									
Hours / Cycle	4									
Category	Part-III	Core	Theory							
Semester	III									
Year of	From the academic year 2023_2024 onwards									
Implementation										
	1. To study the fundamentals in a systematic and	rigorous manner	in the context							
Course	of real valued functions of a real variable through v	various examples.								
Objectives	2. To construct and analyze the mathematical proc	ofs in real valued	functions.							
	3. To understand and apply the concepts of deriva	tives and integral	S							
			Bloom's							
00	Course Outcome(s)	PSO	Taxonomy							
00	Course Outcome(s)	Addressed	Levels							
	(K1 to K6)									
On completing th	e course successfully, the student will be able to									
CO1	Study the basic elements of sets and real valued	PSO1	K1							
	functions with examples									
CO2	Understand the concept of real valued functions,	PSO1	K2							
	limit of a sequence, Cauchy sequence,	PSO2								
	derivatives and integrals									
CO3	Apply the convergence and divergences in	PSO2	K3							
	series, non-negative numbers and non	PSO3								
	increasing sequences									
CO4	Analyze the properties and mathematical proofs	PSO4	K4							
	of Riemann Integral, derivatives, Rolle's									
	theorem, fundamental theorems of calculus,									
	Lagrange's formula and Taylor's formulas									
CO5	Evaluate the Mathematical Proofs of Riemann	PSO5	K5,K6							
	Integral, Derivatives, Rolle's theorem,									
	fundamental theorems of calculus, Lagrange's									
	formula and Taylor's formulas with simple									
	problems									

SYLLABUS										
				BLOOM'S						
UNIT	CONTENT	HOURS	COs	TAXONOMY						
				LEVEL						
Ι	Sets and Elements _ Operations on Sets - Functions	10	CO1	K 1						
	- Real valued functions - Equivalence - Countability		CO2	K2						
	– Real Numbers – Least upper bounds		CO3	K3						
			CO4	K4						
			CO5	K5						
				K6						
II	Definition of a Sequence and Subsequence – Limit of	12	CO1	K 1						
	a Sequence – Convergence Sequences – Divergent		CO2	K2						
	Sequences – Bounded Sequences – Monotone		CO3	K3						
	Sequence - Operations on Convergent Sequence -		CO4	K4						
	Operations on Divergent Sequences - Limit Superior		CO5	K5						
	and Limit Inferior - Cauchy Sequences.			K6						
III	Convergence and Divergences - Series with Non-	13	CO 1	K1						
	negative numbers - Alternating Series- Conditional		CO2	K2						
	Convergence and Absolute Convergence - Tests for		CO3	K3						
	Absolute Convergence - Series whose terms forma		CO4	K4						
	non-increasing Sequence.		CO5	K5						
				K6						
IV	Set of Measure Zero - Definition - Properties of	13	CO1	K1						
	Riemann Integral (without Proof) – Simple Problems		CO2	K2						
	- Derivatives - Algebra of Derivatives (without		CO3	K3						
	Proof) - Rolle's Theorem - Mean Value Theorem -		CO4	K4						
	Generalised Law of Mean – Simple Problems		CO5	K5						
				K6						
V	Fundamental Theorem of Calculus –Second	12	CO1	K 1						
	Fundamental Theorem of Calculus – Taylor's		CO2	K2						
	Theorem –Taylor's formula with Lagrange's form of		CO3	K3						
	the Remainder – Taylor's formula with Integral form		CO4	K4						
	of Reminder – Taylor's Formula with Cauchy form of		CO5	K5						
	the Reminder – simple problems			K6						
Prescribe 1. Goldbe Delhi. 2. Aposto	ed Books/Textbooks erg. R. Richard (1970): Methods of Real Analysis, Oxford ol, T. M. (1998). Introduction to analytic number theory. S	and IBH Pub Springer Scien	olishing Co	Private Ltd., New ness Media						
Referenc	es									
1. S.C. M	alik and Savita Arora (2017): Mathematical Analysis, New	Age Internat	ional Publ	ications, New						
Delhi.										
2. S. G. Venkatachalapathy (2009): Real Analysis, Margham Publications, Chennai.										
3. H. L. Royden (1988), Real Analysis (Third Edition), Prentice – Hall of India PrivateLtd., New Delhi.										
Suggested Reading 1. Walter Rudin (1976), Principles of Mathematical Analysis, Third Edition, McGraw Hill.										
2. Davids	on, K. R., & Donsig, A. P. (2009). Real analysis and applic	ations: theory	in practic	e. Springer Science						
& Bus	iness Media.	autorio. ureory	III practic	e. springer belente						
3. Chandr	asekaran Rao and K.S. Narayanan (2008), S. Real Analysis	s (Vol.II), S. V	Viswanatha	an Pvt. Ltd.,						
Chenr	nai.									

Web Resources

- 1. <u>https://www.youtube.com/watch?v=KICfqqtod0&list=PLTYWkBB_Zi67KTmbeDxxBPxcEeqPfPC6f</u>
- 2. <u>https://www.youtube.com/watch?v=Rhc_kMwz0jY&list=PLTYWkBB_Zi67KTmbeDxxBPxcEeqPfPC6</u> f&index=10
- 3. <u>https://www.youtube.com/watch?v=0M8CkXmZtt4&list=PLTYWkBB_Zi67KTmbeDxxBPxcEeqPfPC6_f&index=18</u>
- 4. <u>https://www.youtube.com/watch?v=c7JKhBarTUg&list=PLTYWkBB_Zi67KTmbeDxxBPxcEeqPfPC6f</u> <u>&index=25</u>
- 5. <u>https://www.youtube.com/watch?v=L7cFTokjXg&list=PLTYWkBB_Zi67KTmbeDxxBPxcEeqPfPC6f&index=26</u>
- 6. <u>https://www.math.lsu.edu/~sengupta/4031f06/IntroRe alAnalysNot es.pdf</u>

	Course Articulation Matrix													
Course			Pr	ogramme	Outcom	ies			Programme Specific Outcomes					Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	3	-	-	2	2	3	-	3	3	-	-	-	K2
CO3	-	-	-	2	2	-	3	-	-	3	1	-	-	К3
CO4	-	-	3	-	-	3	3	-	-	-	-	3	-	K4
CO5	-	-	3	-	-	-	-	3	-	-	-	-	3	K5, K6
Wt. Avg.	-	3	3	2	2	2.5	3	3	3	3	1	3	3	
								Over	all Manni	ng of the	Course	PO-	2.64	
PSO- 2.6														

DISTRIBUTION THEORY

Cour	rse Code								
С	redits	4							
Hour	s / Cycle	4							
Ca	tegory	Part-III	Core		Theory				
Sei	mester	III							
Y	ear of	From the acad	demic year 2023_202	4 onwa	rds				
Imple	mentation		-						
Course	Objectives	 To understation To gain known To explore the second se	 To understand the conceps of distribution functions and to study avout the transformation of random variables. To gain knowledge of important discrete and continuous distributions To explore the limiting form of certain distributions 						
со		Course Outc	ome(s)	F Add	PSO Iressed	Bloom's Taxonomy Levels (K1 to K6)			
On com	pleting the c	course successf	ully, the student will	be able	e to				
CO 1	Define pr	obability dist	ribution functions,	P	SO1	K1			
	basic disci	rete and conti	nuous distributions						
	and limit th	neorems							
CO2	Discuss D	iscrete distribu	tions like	P	SO1	K2			
	Binomial,T	rinomial, Mult	inomial, Poisson,	PSO2					
	Negative B	inomial and Ge	eometric	Р	SO3				
	distribution	is and their	• • •						
	Moments,	Aomentgenerat	ingfunction,						
<u> </u>	Constant	suc function an	dictributions liles	D	601	V 2			
005	Normal II	riform Expon	antial Camma and	P D	SO1 SO2	K3			
	Reta dist	ributions and	some Sampling	D P	SO2				
	distribution	ns like Chi-sou	are Student's t and	1	505				
	F distributi	ons	are, oracent o t and						
CO4	Outline t	the relationsh	hip between the	Р	SO3	K4			
	distribution	n functions a	and compare and	Р	SO4				
	study its pr	operties	1	Р	SO5				
CO5	Explain ce	ntral limit the	orem . Develop the	Р	SO3	K5,K6			
	limiting cas	se of certain dis	tributions	Р	SO4				
	_			Р	SO5				

SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL							
I	Probability distribution function and its Properties-Points of infinite discontinuity of probability distribution functions- Derivations of probability density functions of transformations of one-dimensional random variables - Derivations of probability densityfunctions only with respect to sum, difference, product and quotient of two- dimensionalrandomvariables.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
II	Discretedistributions:Binomial,Trinomial andMultinomialdistributionsandtheirproperties - Poisson, Negative Binomial and Geometric distributions and their Moments,Momentgeneratingfunction, Characteristic function,Cumulants.	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
III	Continuous distributions : Normal, Uniform, Exponential, Gamma and Beta distributions and their properties.	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
IV	Sampling distributions :Chi-square, Student's t and F distributions - Derivation of theirdensityfunctions and their properties, Comparisonof t, FandChi-squaredistributions	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							
V	Weak law of large numbers- Central Limit Theorem (statement only) Limiting distributions : Poisson distributionas a limiting case of Binomial - Poisson distribution as a limiting case of Negative Binomialdistribution - Convergence of Binomial, Poisson, Gamma and Chi-square distribution toNormal distribution using Moment generating function, Limiting form oft distribution –ConvergenceofFdistribution to Chi- squaredistribution.	8	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6							

Prescribed Books/Textbooks

1. Gupta, S.C and Kapoor, V.K. (2002): Fundamentals of Mathematical Statistics, Sultan Chand & Sons Pvt. Ltd., New Delhi.

2. Hogg, R.V., McKean, J. W. and Craig, A.T. (2006): Introduction to Mathematical Statistics, Sixth Edition, Pearson education, India.

3. Gupta, S.P. (2012) : Statistical Methods, Sultan Chand & Sons

References

- 1. Rohatgi, V.K. and Saleh, A.K. Md.E. (2002): An introduction to probability and Statistics, John Wiley and Sons.
- 2. Meyer, P.L.(1970) : Introduction to Probability and Statistical Applications, 2nd edition, AddisonWesley.
- 3. Hogg R.V. and Tanis, E. (1989) : Probability and Statistical Inference, Macmillian Publishing House, , New York

Suggested Reading

- 1. Dwass, M. (1970): Probability Theory and applications, Benjamin, New York
- 2. Feller, W., An introduction to Probability Thepry and its Applications, 2 Vol. Wiley, , New York

Web Resources

- 1. https://www.statisticshowto.com/discrete-probability-distribution/
- 2. <u>https://corporatefinanceinstitute.com/resources/knowledge/other/discrete-distribution/</u>
- 3. https://saylordotorg.github.io/text_introductory-statistics/s08-02-probability-distributions-for-.html
- 4. https://sites.nicholas.duke.edu/statsreview/continuous-probability-distributions/
- 5. https://www.statisticshowto.com/continuous-probability-distribution/

	Course Articulation Matrix													
Course			Pro	gramme	Outcon	nes			Programme Specific Outcomes					Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	2	-	-	-	-	-	-	2	-	-	-	-	K1
CO2	-	2	-	-	2	2	2	-	2	2	2	-	-	K2
CO3	-	-	-	2	2	-	2	-	2	2	2	-	-	K3
CO4	-	-	2	-	-	2	2	-	-	-	2	2	2	K4
CO5	-	-	2	-	-	-	-	2	-	-	2	2	2	K5,K6
Wt. Avg.	-	2	2	-	2	2	2	2	2	2	2	2	2	
PO-2														
PSO - 2														

PROGRAMMING IN C

Cour	se Code											
C	redits	4										
Hour	s / Cycle	4										
Ca	tegory	Part-III	Allied		Theory							
Ser	mester	III	III									
Y	ear of	From the acad	From the academic year 2023_2024 onwards									
Imple	mentation											
Course	Objectives	 To familiaring To acquair programming To create over the second secon	To familiarize with basic principles of programming. 2. To acquaint the students with good program design through structured programming paradigm. 3.To create own C programs for statistical analysis.									
СО		Course Outc	ome(s)	P: Addr	SO ressed	Bloom's Taxonomy Levels (K1 to K6)						
On com	pleting the c	course successf	ully, the student will h	be able	to							
CO1	Define C p	programming f	eatures. Advantages	PS	50 1	K1						
	and Disady	antages	0	PSO2								
				PS								
CO2	Discuss C	language state	ements that control	PS	K2							
	the flow	of a program	n's execution. To	PS	SO 2							
	understand	how code is re	petitively executed.	PS	503							
CO3	Use and in	plement data s	structures like arrays	PS	SO 2	К3						
-	and structu	res to obtain so	olutions.	PS	503							
CO4	Compare s	tructure within	a 'c' program and	PS	503	K4						
	will see ho	w structures an	e defined, and how	PS	SO 4							
	their indivi	dual members	are accessed.									
CO5	Develop sin	mple statistical	programs.	PS	5O 3	K5,K6						
				PS	50 4							
				PS	SO5							

	SYLLABUS								
				BLOOM'S					
UNIT	CONTENT	HOURS	COs	TAXONOMY					
				LEVEL					
Ι	Basic structure of C programs - constants - variables -	10	CO1	K1					
	data types - symbolic constants – Operators -Arithmetic		CO2	K2					
	Expressions – Type conversions - Input/output		CO3	K3					
	operations.		CO4	K4					
			CO5	K5					
				K6					
II	Decision making and branching: if -nested if - else if -	12	CO1	K1					
	switch statement - :? Operator- Unconditionalbranching:		CO2	K2					
	goto statement. Decision making and looping: for-		CO3	K3					
	nested for- while and do-while loops - continue and		CO4	K4					
	breakStatements.		CO5	K5					
				K6					
III	Arrays - declaration and initialization of one and two-	12	CO1	K1					
	dimensional arrays - User-defined functions: function		CO2	K2					
	declaration and initialization- argument types – arrays		CO3	K3					
	and functions- introductory concept of recursion - scope		CO4	K4					
	of variable - storage classes - external, static, automatic		CO5	K5					
	and register types			K6					
IV	Structures: declaration and initialization - Arrays of	10	CO1	K1					
	structures – Unions - Pointers: Declaration		CO2	K2					
	andinitialization pointers and arrays - pointers as		CO3	K3					
	function arguments- Pointers and structures.		CO4	K4					
			CO5	K5					
				K6					
V	Simple Programs: Matrix Multiplication, Transpose and	16	CO1	K1					
	Inverse - Descriptive Statistics: Mean (Discreteand		CO2	K2					
	Continuous) – Standard Deviation (Discrete and		CO3	K3					
	Continuous) – Correlation coefficient – Fitting aStraight		CO4	K4					
	Line – Regression coefficient.		CO5	K5					
				K6					
Prescribe	ed Books/Textbooks								
1. Balagur	rusamy, E (2007), Programming in Ansi C, 5 thedition, Tata	McGraw-Hi	ll, New D	elhi.					
2. Sujatha	Sinha and SubhabrataDinda (2013), Numerical and Statistic	al Methods w	vith						
Program	ning in C, Second Edition, Scitech Publications, Chennai.								
Reference	es								
1. Kernig	han and Ritchie (1986), The C Programming Language, Pres	ntice Hall of I	India,						
New Dell	ni.								
2. Gottfri	ed, B. S (1992), Programming with C, Schaum's outlir	ne series, Sing	gapore.						
3. Yashav	antKanetkar (2021), Let us C, BPB Publication-18 th edition	n.							
Suggeste	ed Reading								
1. https:/	/cstutorialpoint.com/c-language-notes/								
2. nttps://www.vssut.ac.in/lecture_notes/lecture1424554156.pdf									
Web Resources									
1. <u>https://www.eskimo.com/~scs/cclass/notes/top.html</u>									
2. <u>https:/</u>	/www.educba.com/c-programming-matrix-multiplication/								
3. <u>https:/</u>	/www.programiz.com/c-programming/examples/matrix-tr	anspose							
4. <u>https:/</u>	/www.sanfoundry.com/c-program-find-inverse-matrix/								

	Course Articulation Matrix													
Course			Pro	gramme	Outcom	nes			P	rogramm	e Specifio	c Outcom	ies	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	2	3	2	3	-	2	2	3	-	-	K1
CO2	-	3	-	2	3	2	3	-	2	2	3	-	-	K2
CO3	-	2	-	2	3	2	2	-	-	3	3	-	-	К3
CO4	-	-	2	2	3	2	3	-	-	-	3	2	-	K4
CO5	-	-	3	2	3	2	3	2	-	-	3	2	2	K5,K6
Wt. Avg.	-	2.7	2.5	2	3	2	2.8	2	2	2.3	3	2	2	
PO 2.4														
PSO 2.26														

ACTUARIAL STATISTICS

Course Code					
Credits	3				
Hours / Cycle	4				
Category	Part IV	7	Inter Disciplinary	Theory	
Semester	III		· · · · · ·		
Year of	From the a	academ	ic year 2023_2024 onwards	6	
Implementation			-		
	1. To impa	rt basic	concepts in actuarial stud	ies	
Course	2. To prep	are stuc	lents to take up a career in	Actuarial Practice	e
Objectives	3. To expl	lore sor	ne of the fiscal and ethica	al dilemmas often	encountered in the
	process of	busine	ss decision-making.		
				PSO	Bloom's
CO		Cours	e Outcome(s)	Addressed	Taxonomy Levels
				Addressed	(K1 to K6)
On completing th	0.001400.011	a a a a a ful	by the student will be able	, to	
On completing th	le course su	ccessiu	iy, the student will be able		
CO1	Spell finan	cial risl	ks in the insurance and	PSO1	K1
	finance fie	lds, usi	ng mathematical and		
	statistical	method	s		
CO2	Understan	d to ap	ply the probability and	PSO1	K2
	statistics c	oncept	s to analyze and solve	PSO2	
	the financi	ial impa	act of uncertain future		
	events.	_			
CO3	Apply kno	wledge	in foundational areas of	PSO2	K3
	mathemat	ics as w	ell as finance and	PSO3	
	economics	s essent	ial to the actuarial field.		
CO4	Analyze pr	recisely	and effectively by	PSO4	K4
	developing	g mathe	matical and critical		
	thinking n	nodels			
CO5	Determine	e and ex	plain the ethical	PSO5	K5,K6
	dilemmas	encoun	tered in the process of		
	business d	lecision	-making.		

	SYLLABUS						
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOM Y LEVEL			
I	Effective RateofInteresti-NominalRateofInteresti ^(m) - ForceofInterest δ- Relationshipsbetweendifferentratesofinterest- Expressionforδbyuseofcalculus-Presentvalues-Effective rateofdiscountd-Nominalrateofdiscountd ^(m)	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6			
II	Annuities -Immediate Annuity-Annuity-due -Perpetuity- AccumulationandPresentvaluesofAnnuities-Increasing andDecreasing annuities- Annuitiesandinterestrateswithdifferentfrequencies- ContinuousAnnuities	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6			
III	Analysis of Annuity payments-Capital and Interest elements included in the Annuity payments- Loanoutstanding aftert payments-Purchase price of Annuities - Annuities involving incometax - Purchase price of an annuity net of tax.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6			
IV	Principles of insurances - Types of assurance: Temporary assurance, Pure endowment, Endowment assurance and whole life assurance – Expression for present value of assurance benefits under - Temporary assurance, Pure endowment, Endowment assurance and whole life assurance – Simple problems.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6			
v	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6			
 Prescribed Books/Textbooks 1. MathematicalBasisofLifeAssurance(IC81)(2005),PublishedbyInsuranceInstituteofIndia,Bombay 2. Dixit,S.P.,Modi,C.S.&Joshi,R.V.MathematicalBasicsofLifeAssuarnce.Insurance Instituteof India,Mumbai 3. McCutcheonJ.J.and Scott.(1989).Mathematicsof Finance.Heinemann,London.Neill,A(1977). Life Contingencies.Heinemann,London 							
1. Frenk	Ayres, J. R (1983). Theory and Problems of Mathematics of	f Finance. Sch	aum's Ou	utline Series,			

McGraw-Hill book Company, Singapore. 2. Benjamin and pollard, J. H (1980), Analysis of Mortality and other Actuarial Statistics, Second Edition,

Heinemann, London

Suggested Reading

1. Gupta, S. C and Kapoor, V. K (2020), Fundamentals of Applied Statistics, Sultan Chand and Sons, New Delhi.

2. Shaillaja R Deshmuk (2009), Actuarial Statistics an Introduction using R, University Press, India.

Web Resources

1.<u>https://medium.com/@mmahajan8/applications-of-actuarial-science-beyond-insurance-730b6ba8623e</u>
2. <u>https://actuaries.org.uk/standards/quality-assurance-scheme-qas/assurance-for-insurance/</u>
3. <u>https://www.thebalancemoney.com/what-is-an-insurance-actuary-4171820</u>

	Course Articulation Matrix													
Course			Pro	gramme	Outcon	nes			P	rogramm	e Specifi	c Outcom	ies	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	3	-	-	2	2	3	-	1	2	-			K2
CO3	-	-	-	2	2	-	3	-	-	-	3	-	-	K3
CO4	-	-	2	-	-	2	3	-	-	-	-	3	-	K4
CO5	-	-	2	-	-	-	-	2	-	-	-	-	3	K5,K6
Wt. Avg. - 3 2 2 2 3 2 2 3 3 3														
Overall Manning of the Course PO-2.28														
	Overall Mapping of the Course PSO-2.6													

SEMESTER-IV

THEORY OF ESTIMATION

Course Code			
Credits	4		
Hours / Cycle	4		
Category	Part -III	Core	Theory
Semester	IV		
Year of	From the academic year 2023_2024 onwards		
Implementation			
Course Objectives	 To understand the properties of good estimation variance unbiased estimators with theorem and 2. To find the point and interval estimators population parameters in sample study. To describe the estimators with prior km population constraints for decision making 	ators and impo d problems. s for better un lowledge of the	ortance of minimum aderstanding of the e estimators in the
СО	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)
On completing the	e course successfully, the student will be able to		
CO1	Study the basic concepts of estimators, methods of classical and Bayesian estimators.	PSO1	K1
CO2	Understand the importance of the minimum variance unbiased estimators and classical and Bayesian estimators	PSO2	K2
CO3	Apply the methods of estimation to find the unbiased and minimum variance unbiased estimators.	PSO3	K3
CO4	Analyze the sample constraints and draw the inference about the population parameters.	PSO4	K4
CO5	Evaluate the inference drawn from the classical and Bayesian estimators for the further study.	PSO5	K5,K6

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Introduction - Estimator - Properties of Good Estimator - Unbiasedness – Biased Estimator - Mean Square Error– Consistency – Properties - Sufficient Conditions for Consistency	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
II	Minimum Variance Unbiased (MVU) Estimator - Uniqueness of MVU Estimator - Cramer - Rao Inequality and its Importance - Minimum Variance Bound (MVB) estimator - Condition for MVB estimators to exist	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	Sufficiency – Completeness - Factorisation Theorem - Rao–Blackwell Theorem – Lehman Scheffe Theorem – Efficiency	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Methods of Estimation: Maximum Likelihood Estimation - Properties of Maximum Likelihood Estimation (without proof) - Moment Estimation – Minimum χ^2 Estimation - Modified Minimum χ^2 Estimation - Least Square Estimation-Simple Problems	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Bayesian Estimation: Elements of Bayes' Estimation – Prior and Posterior Distributions - Loss Functions – Bayes Risk. (Definitions Only) Interval Estimation: Introduction - Confidence Intervals for Mean (Known S.D. & Unknown SD), Confidence Intervals for difference of Means - Confidence Intervals for Variance and Ratio of Variances.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks

- 1. Gupta, S. C and Kapoor, V. K (2002), Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi. (Chapter 17)
- 2. Goon, A. M., Gupta, M.K., and Dasgupta, B. (1980), An Outline of Statistical Theory (Volume II), The World Press Private Limited, Calcutta. (Chapter 1, Chapter 2 & Chapter 3)
- 3. Mood, A. M, Graybill, F. A andBoes, D. C (1998), Introduction to the Theory of Statistics, McGraw-Hill, New York. (Chapter 11)
- 4. Sinha, S.K., (1998), Bayesian Estimation, New Age International Publishers. (Chapter 1)

References

- 1. Manoj Kumar Srivastava, Abdul Hamid khan and Namita Srivastava (2014), Statistical Inference: Theory of Estimation, PHI Learning Private Limited, New Delhi.
- 2. Rajagopalan, M and Dhanavanthan. P (2012): Statistical Inference, PHI Learning Private Limited, New Delhi.

Suggested Reading

1. Rohatgi, V.K. and Saleh, A.K.M.E., (2009), An Introduction to Probability and Statistics, Wiley Series, India Edition.

2. Hogg, R. V and Craig, A. T (2002), Introduction to Mathematical Statistics, Pearson Education Asia, India. **Web Resources**

- 1. <u>https://www.youtube.com/watch?v=53ONuP3XMnA</u>
- 2. https://www.youtube.com/watch?v=WR62a78 H0s
- 3. <u>https://www.youtube.com/watch?v=9i6QhqmJ5zg</u>
- 4. <u>https://www.youtube.com/watch?v=iMjDOTIb3-Q</u>
- 5. <u>https://www.youtube.com/watch?v=yWGedZjAFCI</u>
- 6. <u>https://www.youtube.com/watch?v=LKB4yM9jQMY</u>
- 7. https://dcpehvpm.org/E-Content/Stat/E%20L%20Lehaman.pdf

	Course Articulation Matrix													
Course			Progra	umme O	utcome	s			Pr	ogramm	e Specific	Outcom	ies	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	3	-	-	3	3	3	-	-	3	-	-	-	K2
CO3	-	-	-	3	3	-	3	-	-	-	3	-		K3
CO4	-	-	3	-	-	3	3	-	-	-	-	3	-	K 4
CO5	-	-	3	-	-	-	-	3	-	-	-	-	3	K5,K6
Wt. Avg.	Wt. Avg. - 3<													
Overall Mapping of the Course PO-3 PSO-3 PSO-3														

SAMPLING TECHNIQUES

Cour	rse Code										
С	redits	4									
Hour	s / Cycle	4									
Ca	tegory	Part-III	Core		Theory						
Sei	mester	IV									
Y	ear of	From the acad	lemic year 2023_2024	onwar	ds						
Imple	mentation										
		1. To introduce the concept of census and sample surveys.									
Course	Objectives	2. To learn va	2. To learn various methods of sampling								
		3. Study the p	roperties of estimator	s unde	r differe	nt sampling methods					
60				P	so	Bloom's Taxonomy Levels					
CO		Course Outco	ome(s)	Addr	ressed	(K1 to K6)					
On com	pleting the o	course successf	ully, the student will l	be able	to	174					
601		1 • .	<u> </u>	D	201	174					
COI	Define the	basic concepts	or sample surveys		SO2	KI					
				10							
CO2	Demonstra	te various meth	nods of sampling for	PS	50 1	K2					
	estimating	population	information using	PS	SO2						
	sampling										
CO3	Apply sar	npling techni	ques in real life	PS	50 1	К3					
	problems			PS	SO 2						
				PS	SO4						
CO4	Analyse th	e unbiasedness	and efficiencies of	PS	501	K 4					
	estimates	obtained using	different sampling	PS	SO2						
	techniques	•		PS	<u>504</u>						
CO5	Identify m	erits and limit	ations of sampling	PS DC	501	K5,K6					
	techniques	in real time sui	veys	PS PS	502 NO4						
				PS PS	504 NOT						
				PS	505						

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Census and sample survey-Advantages and	12	CO1	K1
	disadvantages of sampling-Principles of sampling		CO2	K2
	theory-Probability and Non-probability sampling-		CO3	K3
	Planning of large-scale sample surveys - Methods of		CO4	K4
	measurements -Questionnaire versus Schedule - The		CO5	K5
	Frame – The Pretest – Integrated multi-subject survey –			K6
	Operationsrequired for survey analysis -Sources of			
	sampling and non-sampling errors.			
II	Simple random sampling- Procedures of selecting a	12	CO1	K1
	random sample -Properties of the estimates and their		CO2	K2
	variances - The finite population correction -Estimation		CO3	K3
	of the standard error from a sample - Confidence		CO4	K4
	limits-Random sampling with and without replacement		CO5	K5
				K6
III	Sampling proportions and percentages – Qualitative	12	CO 1	K 1
	characteristics - Variances of the sample estimates – The		CO2	K2
	estimation of sample size- Formulae for n - Inverse		CO3	K3
	sampling-Sample size with more than one item.		CO4	K4
			CO5	K5
				K6
IV	Stratified random sampling - Principles and advantages	12	CO1	K1
	of stratification - Properties of the estimates and their		CO2	K2
	variances - Optimum allocation in Stratified Sampling -		CO3	K3
	Proportional allocation – Relative precision of		CO4	K4
	Stratifiedrandom and simple random sampling -		CO5	K5
	Estimation of gain in precision due to stratification -			K6
	Stratified Sampling for proportions.			
V	Systematic Sampling - Advantages and disadvantages-	12	CO1	K1
	Variance of the estimated mean- Comparison		CO2	K2
	of systematic sampling with simple random sampling -		CO3	K3
	Comparison of systematic with stratified random		CO4	K4
	sampling -Populations with linear trend - Circular		CO5	K5
	systematic sampling - Single-stage cluster sampling with			K6
	clusters of equal sizes – Variance in terms of intra cluster			
	correlation- Relative efficiency of cluster sampling-			
	Cluster sampling for proportions.			

Prescribed Books/Textbooks

1. Cochran, W.G. (1977). Sampling Techniques, Third Edition, John Wiley & Sons, NY.

References

- 1. ParimalMukhopadhyay (2009), TheoryandMethodsofSurveySampling, Prentice Hall of India, NewDelhi.
- 2. Singh D., and Chowdhary, F. S. (2018). Theory and Analysis of Sample Survey Design, New Age International Private Ltd., New Delhi.
- 3. Gupta, S.C., and Kappor, V. K. (2019). Fundamentals of Applied Statistics, Fourth Edition, Sultan Chand & Sons (Publisher), New Delhi, India.

Suggested Reading

 Murthy, M. N. (1967). Sampling Theory and Methods, Statistical Publishing Society, Calcutta.Sukhatme, P. V., and Sukhatme, B. V. (1970). Sampling Theory of Surveys with Applications, Asia Publishing House, New Delhi

Web Resources

1. <u>http://ocw.jhsph.edu/courses/statmethodsforsamplesurveys/pdfs/lecture2.pdf</u>

- 2. https://www.questionpro.com/blog/stratified-random-sampling/
- 3. https://www.scribbr.com/methodology/systematic-sampling/

		Course Articulation Matrix													
Course			Pro	gramm	e Outco	mes			Pı	ogramm	e Specifio	c Outcom	Cognitive		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level	
CO1	-	3	-	-	2	2	2	-	2	3	-	-	-	K1	
CO2	-	3	-	-	2	2	2	-	2	3	-	-	-	K2	
CO3	-	3	2		2	2	2	-	2	3	-	3		K3	
CO4	-	3	2	-	2	2	2	-	2	3	-	3	-	K4	
CO5	-	3	2	-	2	2	2	2	2	3	-	3	3	K5,K6	
Wt. Avg.	-	3	2	-	2	2	2	2	2	3	-	3	3		
	Overall Mapping of the Course PO-2.17														
	PSO-2.7												-2.75		

MAJOR PRACTICAL - II

Cour	se Code									
C	redits	2								
Hour	s / Cycle	2								
Ca	tegory	Part	III	Core	Practical					
Sei	mester	III & I	V	·						
Y	ear of	From t	he academic ye	ear 2023_2024						
Imple	mentation		-							
C Obj	ourse jectives	 To ir real life to pr probler To p 	 To impart the knowledge of various discrete and continuous distributions to real life applications to provide practical knowledge about parameters estimation with practical problems. To provide practical knowledge of various sampling techniques 							
со		Со	urse Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)				
On con	npleting the	course s	uccessfully, the	e student will be ab	ble to					
CO1	Relate the problems.	e statist	ical technique	es to real world	PSO1	K1				
CO2	Illustrateth its goodne	ne appro ss of fit.	priate distribu	ition and testing	PSO2	K2				
CO3	Choose the sample and	ne test d infer th	procedure for ne data.	r large & small	PSO3	K3				
CO4	Examine fixing the various dis	the cond confide	cept of interva ence interval 18	l estimation and of parameter of	PSO4	K4				
CO5	Choose th and select and knowl techniques	e sampl ting app edge abo s.	ing metbods in propriate samp put comparing	n sample surveys bling Techniques various sampling	PSO4 PSO5	K5,K6				

EXCERICES

I Fitting of discrete distributions and testing the goodness of fit :

- 1. Binomial distribution(when the coin is unbiased)
- 2. Binomial distribution(when the coin is biased)
- 3. Poisson distribution
- 4. Geometric distribution
- 5. Negative Binomial distribution
- 6. Normal distribution (Area method)
- 7. Normal distribution (Ordinate methods)
- 8. Exponential Distribution

II Estimation of parameters by the method of moments and maximum likelihood for

- 9. Binomial distribution
- 10. Poisson distribution
- 11. Normal distribution

III Derivation of confidence intervals for the parameters of

- 12. Population mean
- 13. Difference of mean
- 14. Population variance
- 15. Ratio of variance

IV Sampling theory

- 16. Simple random sampling and Estimates
- 17. Sampling for proportion
- 18. Stratified random sampling and Estimates
- 19. Optimum and proportional allocations
- 20. Systematic sampling and Estimates
- 21. Single stage Cluster sampling

Course Articulation Matrix														
Course Outcomes	Programme Outcomes									rogramm	Cognitive			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	1	-	-	1	2	2	-	-	3	-	-	-	K2
CO3	-	-	-	2	3	-	2	-	-	-	3	-	-	К3
CO4	-	-	2	-	-	2	2	-	-	-	-	3		K4
CO5	-	-	2	-	-	2	2	2	-	-	-	2	2	K5, K6
Wt. Avg.	-	2	2	2	2	2	2	2	3	3	3	2.5	2	
Overall Mapping of the Course PO- 2 PSO- 2.7														

DATA ANALYSIS USING SPSS & SQL

Cour	rse Code										
C	redits	4									
Hours / Cycle		4									
Ca	tegory	Part-III	ory								
Sei	mester	IV									
Y	ear of	From the academic year 2023_2024 onwards									
Imple	mentation	. –									
Course	Objectives	 To make Students familiar in using Statistical Package for Social Sciences (SPSS) and Structured Query Language (SQL). To gain knowledge how to use SPSS and SQL programming. To understand the applications of SPSS and SQL in analyzing statistical data 									
СО		Course Outco	ome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)						
On com	pleting the c	course successf	ully, the student will b	be able to							
CO1	Recall the	basics of using	statistical software	PSO1	K1						
	SPSS and S	QL		PSO3							
CO2	Understand	the conc	ept of reading,	PSO1	K2						
	manipulati	ng and analyzi	ng data using these	PSO2							
	packages.			PSO3							
CO3	Choose the	e appropriate st	atistical test for the	PSO3	K3						
	given data	set to solve the	problem	PSO4							
CO4	Analyze th	e results obtai	ned by using these	PSO3	K4						
	packages			PSO4							
				PSO5							
CO5	Evaluate a	nd develop pla	an of action to the	PSO2	K5,K6						
	results obta	ained		PSO3							
				PSO4							
				PSO5							

SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL								
Ι	Data handling: Opening a data file in SPSS data file – SPSS Data editor – Editing and manipulating data – Missing values – Editing SPSS output - Copying SPSS output – Importing Data. Transforming Variables: Recoding Variables: Dichotomies and dummy variable – Using two or more variables to create a new variable – Computing the variable – Using the count function – Computing an index using the mean - Multiple response - Targeted Selection - Random Selections - Selecting cases for inclusion in a New data sheet.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
II	Diagrammatic representation: Bar Charts - Simple Bar Charts – Clustered Bar Chart – Error Bar Chart - Pie Chart – Scatter Plots – Line Graphs – Histogram– Box plot. Descriptive Statistics: Measures of Central Tendency, Measures of Dispersion - Skewness- Kurtosis.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
III	Correlation: Simple, Partial and Multiple Correlation, and Spearman's Rank Correlation, Regression analysis: Simple and Multiple linear Regression	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
IV	 SQL: Data Definition Language-Data Manipulation Language- Data Control Language -Difference between SQL and NoSQL. Database: Database Objects- Database Tables,-Table Records- Types of Database Management Systems - Relational Database Management Systems, SQL Data Types : Numeric,Date and Time, Character, String, Binary, Miscellaneous data types. SQL Operators- Arithmetic, Comparison, Logical, Bitwise.SQL Expressions - Boolean, Numeric, Date. Comments - Single Line. Data Definition Language command and operations: CREATE, ALTER, DROP, TRUNCATE, and RENAME. Data Manipulation Language Commands and Operations: SELECT, INSERT, UPDATE, and DELETE. Data Control Language Commands: GRANT and REVOKE 	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
V	SQL functions - Aggregate functions, String Functions, Date Functions Aggregate Functions - Min, Max, Sum, Avg, Count, Distinct. String Functions: Char, Left, Len, Lower, trim, Date Functions: DateAdd, DateDiff, Datepart, current_timestamp, Isdate	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								

Functions: In, Between, And, or, Not, Group by,									
Having, Order By, Like, Is Null, Is not null, cast									
Ranking Window Functions - row_number, rank(),									
dense_rank()									
Analytical Functions: first_value, Last_value, Lead, Lag									
SQL Joins - inner join, Left Join, Right Join, Full and									
UNION.Views and Transactions. Difference between									
Sql Query and Sub Query									
Prescribed Books/Textbooks									
1. Rajathi, A and P Chandran (2010), SPSS for you, MIP Publishers.									
2. Field A (2013) Discovering Statistics Using SPSS SAGE Publication									
3 Cunningham B I (2012) Using SPSS : An Interactive Hands-on Approach SAGE south India Edition									
4 Thomas Nield (2016) Getting Started with SOL: A Hands-On Approach for Beginners O'Reilly Media									
Inc									
5 Gordon S Linoff(2008) Data Analysis using SOL and Eycel John Wiley & Sons Inc.									
5. GORDON S.LINOTI (2008). Data Analysis using SQL and Excel. John Wiley & Sons Inc.									
B eferences									
1 Drive C. Courth (2017) HOW/TO USE SDSS: A Star Dr. Star Cride to Analysis and Internetitien									
1. Brian C. Cronk (2017). HOW TO USE SPSS: A step-by-step Guide to Analysis and Interpretation.									
RoutledgePublishers.									
2. SarmaKV. S (2010). Statistics made simple: do it yourself on PC. PHI									
3. Nancy L. Leech et. al., (2005): SPSS for Intermediate Statistics: Use and Interpretation, Second edition,									
Lawrence Erlbaum Associates, Inc.									
4. Walter Shields (2019). SQL Quick Start Guide: The Simplified Beginner's Guide to Managing, Analyzing,									
and Manipulating Data With SQL. Clyde Bank Media LLC									
5. Anthony Molinaro (2005). SQL Cookbook. O'Reilly Media, Inc.									
Suggested Reading									
1. William E. Wagner (2015). Using IBM SPSS statistics for research methods and social science statistics.									
SAGE Publications Inc.									
2. LokeshJasrai, (2020). Data Analysis Using SPSS, SAGE Publications India Pvt Ltd									
3. <u>Anthony DeBarros</u> (2018). Practical SQL A Beginner's Guide to Storytelling with Data. No Starch Press									
4. Sylvia MoestlVasilik (2016). SQL Practice Problems: 57 Beginning, Intermediate, and Advanced Challenges									
for You to Solve Using a "learn-by-doing" Approach									
Web Resources									
1. <u>https://www.voutube.com/watch?v=0S89RyIVu2k</u>									
2. https://www.youtube.com/watch?v=ZpwZS3XnEZA									
3. https://www.classcentral.com/classroom/freecodecamp-spss-for-beginners-full-course-104934									
4. SOL Course from Khan Academy									
5. SOL Tutorial - Full Database Course for Beginners YouTube video									
6. <u>SQlbolt.com</u>									

7. <u>sqlzoo.net</u>

Course Articulation Matrix														
Course Outcomes			Pro	gramm	e Outco	mes		P	rogramm	e Specifio	c Outcom	ies	Cognitive Level	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	-	2	-	2	3	-	2	-	2	-	2	-	-	K1
CO2	-	2	-	2	3	2	2	-	2	2	2	-	-	K2
CO3	-	-	2	2	3	2	2	-	-	-	2	2	-	K3
CO4	-	-	2	2	3	2	2	2	-	-	2	2	3	K 4
CO5	-	2	2	2	3	2	2	2	-	2	2	2	3	K5, K6
Wt. Avg.	-	2	2	2	3	2	2	2	2	2	2	2	3	
Overall Mapping of the Course PO- 2.14 PSO- 2.2														

ALLIED PRACTICAL – II

Course Code											
Credits	2										
Hours / Cycle	2										
Category	Part III	Allied	Practical								
Semester	III & IV										
Year of Implementation	From the academic year 2023_2024 onwards										
Course Objectives	 To familiarize with Programming langu package To explore statistical data analysis using To solve problems using C programming, 	age C & SQL C programming SPSS package	and to handle SPSS and SPSS package and SQL								
со	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)								
On completing the	On completing the course successfully, the student will be able to										
CO1	Recall the basic knowledge of	PSO1 PSO3	K1								
	acquire knowledge in using SPSS package	1305									
CO2	Demonstrate the use of C,SPSS and SQL	PSO2	K2								
	in solving statistical problems	PSO3									
CO3	Choose the appropriate statistical test for	PSO3	K3								
	the given data set to solve the problem	PSO4									
CO4	Analyze the results obtained by using the	PSO3	K4								
	programming language and package.	PSO4									
CO5	Evaluate and Interpret the results obtained	PSO3	K5,K6								
		PSO4									
		PSO5									

EXCERICES Semester I- Programming in C

- 1. Minimum, Maximum, Range, Coefficient of range.
- 2. Mean and Median- Raw and Frequency data.
- 3. Geometric mean and harmonic mean.
- 4. Quartile deviations, Variance, Standard Deviation
- 5. Coefficient of Quartile deviations and Coefficient of variance.
- 6. Skewness, Bowley's coefficient of skewness, first four moments.
- 7. Simple correlation Coefficient
- 8. Fitting of Simple linear regression.
- 9. Matrix operations: Addition, Subtraction and Multiplication
- 10. Matrix operations: Trace, Transpose and Inverse of matrix.

Semester II-SPSS & SQL

- 1. Data handling and transformation of variables
- 2. Diagrammatic Representation
- 3. Measures of Central Tendency and Dispersion
- 4. Simple, Partial and Multiple correlation, Rank correlation
- 5. Simple and multiple linear regression
- 6. Query using Analytical and aggregate functions
- 7. Query using Joins and filtering statement
- 8. Query to find the duplicate row count from specific table using window partition
- 9. Query to find the column/row with null value and replace it with a constant
- 10. Query to find the frequently used item

Course Articulation Matrix														
Course Outcomes	Programme Outcomes									rogramm	Cognitive			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	2	-	2	3	-	2	-	2	-	2	-	-	K1
CO2	-	2	-	2	3	2	2	-	-	2	2	-	-	K2
CO3	-	-	2	2	3	2	2	-	-	-	2	2	-	K3
CO4	-	-	2	2	3	2	2	-	-	-	2	2		K 4
CO5	-	-	2	2	3	2	2	2	-	-	2	2	2	K5, K6
Wt. Avg.	-	2	2	2	3	2	2	2	2	2	2	2	2	
Overall Mapping of the Course PO-2.14 PSO-2														

Environmental studies (UGC syllabus)

SEMESTER-V
OPERATIONS RESEARCH

Cours	se Code									
Cr	edits	5								
Hours	/ Cycle	5								
Cat	egory	Part-III	Core	Theory						
Sen	nester	V		·						
Ye	ar of	From the acad	lemic year 2023_2024 onwa	ards						
Implen	nentation		-							
Course	Objectives	 Classify and description of Understand problems. Ability to u the recourses 	improve operational Resea the real system ing the mathematical tools nderstand and analyze ma more effectively.	arch models fro s that are neede nagerial proble	m the verbal d to solve opti ms in industry	imization 7 to use				
СО		Course Ou	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)						
On com	pleting the c	course successfu	ully, the student will be abl	e to						
CO1	Introduce and Linea	the basic con r Programming	cepts of Operations Rese Problem.	earch	PSO1	K1				
CO2	Equip Stu solve deci Probabilis	detns with Opti sion making f tic models	mization techniques and poroblems based on Deter	make them to rministic and	PSO1 PSO2	K2				
CO3	Design a mathematical model for an optimization problem in real life by adopting the techniques of operations research.PSO3K3									
CO4	Evaluate t and to esti	he concepts in mate the optim	linear programming and al schedule of a project.	game theory	PSO4	K4				
CO5	D5 Analyse the optimization techniques of linear programming, theory of games and network analysis in solving real world problems.									

SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL								
I	IntroductiontoOperationsResearch–O.R. models– PhasesofanO.R.study,Linearprogramming–Formulation– Graphical solution.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
II	Simplexmethod–ArtificialVariables–Penaltymethod–Two- Phasemethod–SpecialcasesinLPP– Dual problemsand Dualitytheory.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
III	Transportation models : Definition – Initial solution by North West Corner method – LeastCostEntrymethod– Vogel'sApproximationmethod– OptimalsolutionusingMODImethod– Unbalanced problems– Degeneracy.AssignmentmodelDefinition– SolutionbyHungarianAlgorithm	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
IV	SequencingProblems:Assumptions– 'n' jobsthroughtwo machines- 'n' jobsthrough 'm' machinesGametheory:Rectangulargame– Optimalsolutionofatwo-personzerosumgame-Dominance rules– Solution of mixed strategy game by Algebraic method, Graphical methodandLinear Programming Method.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
v	Critical Path Method - Network Diagram – Determination of the floats- Evaluation of criticalpath. PERT– Differenttimeestimates –Probabilityconsiderations.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
Prescrib 1. Hamd 2. Kapoo 2010,S	ed Books/Textbooks y,ATaha,(2005),OperationsResearch,AnIntroduction,8 th edition or,V.K(2008),OperationsResearch–QuantitativeTechniquesfor ultanChand and Sons	n,MacmillanF Management	Publishing -,8 th	gCo. edition,Reprint–								
 References 1. KanthiSwarup,GuptaP.KandManmohan(2003),ProblemsinOperationsResearch,SultanChand and Sons, NewDelhi. 2. Gupta,P.KandHira,D.S,(1986),OperationsResearch-AnIntroduction,SultanChandand Sons, NewDelhi. 3. F.S. Hillier and G.J. Lieberman : Introduction to Operations Research- Concepts andCases,9thEdition, Tata McGrawHill.2010. 4. MartinOsborne,AnIntroductiontoGameTheory, OxfordUniversityPress,2003. 												
1. Micha CRC 1 2. Kalava (40% the	 Suggested Reading 1. Michael Carter, Camille C. Price& GhaithRabadi (2018) Operations Research - A Practica Introduction CRC Press 2. Kalavathy S. (2000) . Operations Research, 4th Edition, Vikas Publishing House (40% theory and 60% practical) 											

Web Resources

1. <u>https://www.bbau.ac.in</u>
2. <u>https://www.informs.org/Resource-Center/Resources-for-Instructors/Resources-for-Operations-Research-Instructors</u>

	Course Articulation Matrix													
Course			Pro	gramme	Outcom	nes			Programme Specific Outcomes				Cognitive	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO 2	-	2	-	-	2	3	3	-	2	3	-			K2
CO 3	-	-	-	2	2	-	3	-	-	-	3	-	-	K3
CO 4	-	-	2	-	-	2	3	-	-	-	-	3	-	K4
CO 5	-	-	2	-	-	-	-	2	-	-	-	-	3	K5,K6
Wt. Avg.	-	2.5	2	2	2	2.5	3	2	2.5	3	3	3	3	
Overall Mapping of the Course PO-2.28														
	Overall Mapping of the Course PSO-2.9													

TESTING OF HYPOTHESIS

Cour	rse Code					
C	redits	4				
Hour	rs / Cycle	5				
Ca	tegory	Part-III	Core		Theory	7
Sei	mester	V				
Y	ear of	From the acad	demic year 2023_202	24 onwa	rds	
Imple	mentation					
Course	Objectives	1. To provide 2. To carry ou possible error 3. Introduce r procedures.	theoretical understa at the test procedure s for any given null main ideas and princ	nding o s and ol and alte ciples be	of Statisti btain the ernative h ehind the	cal Inference procedures. best test with minimum hypothesis. e non-parametric inference
СО		Course Outc	ome(s)	I Add	PSO lressed	Bloom's Taxonomy Levels (K1 to K6)
On com	pleting the c	course successf	be able	e to		
CO1	Recall the b and hypothe simple using	asic concepts of esis testing when 5 N.P. Lemma	testing of hypothesis null and alternative is	5 P 5 P	2SO1 2SO2	K1
CO2	Classify UN alternative i exponential monotone li	MPT for various s composite. Illu families of dist kelihood proper	as distribution when astrate one paramete: ributions and outline ty.	n P r P e	PSO1 PSO2	K2
CO3	Develop the when null composite distribution.	e best test using and alternative for mean and	Likelihood Ratio Tes may be simple o variance of Norma	t P r P l	2SO2 2SO3	К3
CO4	Examine th carryout te problem.	e concept of tes st procedure fo	st of significance and or real life situation	l P n P	2803 2804	K4
CO5	Evaluate the distribution Median, and ANOVA.	e test procedu free tests wit d Goodness o	re corresponding to h respect to Mean of fit and one way) P , P	2SO4 2SO5	K5,K6

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Simple and composite hypotheses – Null hypothesis and	15	CO 1	K1
	alternative hypothesis - Test - Critical region- Type I		CO2	K2
	error and Type II error - Power of the test - Steps		CO3	K3
	involved in solving testing statisticalhypothesis - Most		CO4	K4
	Powerful Test – Neymann–Pearson Lemma – Simple		CO5	K5
	applications.			K6
II	Most Powerful Test for the parameters of binomial,	15	CO1	K 1
	Poisson normal and exponential distributions -Critical		CO2	K2
	regions and sufficient statistics - Uniformly Most		CO3	K3
	Powerful Tests - Power function and powercurve -		CO4	K4
	UMP tests for the parameters of univariate binomial,		CO5	K5
	Poisson, normal and exponential distributions.			K6
III	Likelihood Ratio Test (LRT) : Definition of LRT -	15	CO1	K1
	Properties of LRT tests (Statements only) – LRT		CO2	K2
	for the mean and LRT of the variance of univariate		CO3	K3
	normal population – Test for equality of means of2		CO4	K4
	independent univariate normal populations with		CO5	K5
	common unknown variance – Test for equality			K6
	ofvariances of 2 independent univariate normal			
	populations.			
IV	One-tailed and two-tailed tests – Large Sample Test:	15	CO1	K1
	Tests of significance of proportion, Differenceof		CO2	K2
	proportions, mean, Difference of means, standard		CO3	K3
	deviation and difference of standard deviations- Small		CO4	K4
	sample Test: t (except Test for partial and multiple		CO5	K5
	correlation coefficient) and F – Univariatenormal			K6
	distributions and correlation coefficient. Homogeneity			
	of variances of normal distributions –Homogeneity of			
	correlation coefficients.		0.04	
V	Non parametric tests: Test of Randomness of a sample	15	CO1	K1
	– Sign test for one sample and 2 samples – Wilcoxon		CO2	K2
	Signed rankedtest for one sample and 2 samples –		CO3	K3
	Median test – Mann-Whitney–U-test – Wald -		CO4	K4
	Wolfowitz Run Test – Kruskal-Wallis Test – Test of		CO5	K5
	independence of attributes.			K6

Prescribed Books/Textbooks

1. Gupta, S. C and Kapoor, V. K (2002), Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi (Relevant Chapters and Sections only).

2. M. Rajagopalan, P. Dhanavanthan(2012). Statistical Inference, PHI Learning Pvt. Ltd.,

References

1. Hogg, R. V and Craig, A. T (2002), Introduction to Mathematical Statistics, Pearson Education Asia, India.

2. Mood, A. M, Graybill, F. A and Boes, D. C (1998), Introduction to the Theory of Statistics, McGraw-Hill, New York.

3. Beaumont, G.P. (1980): Intermediate mathematical Statistics, Chapman and Hall, New York.

Suggested Reading

- 1. https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture01.pdf
- Rohatagi, V.K. (1976): An Introduction to Probability and Statistics, John Wiley & Sons. (for unit 5-Section 8.8 only)

- 1. <u>https://nptel.ac.in/courses/111/105/111105043/</u>
- 2. <u>https://nptel.ac.in/courses/111/102/111102143/</u>
- 3. https://nptel.ac.in/courses/111102143

	Course Articulation Matrix													
Course			Prog	gramme	Outcom	nes			P	rogramm	e Specific	c Outcom	ies	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	2	2	2	-	2	2	-	-	-	K1
CO2	-	3	-	-	2	2	2	-	2	2	-	-	-	K2
CO3	-	2	-	2	3	2	3	-	-	2	2	-	-	K3
CO4	-	-	2	2	2	2	3	-	-	-	2	2	-	K4
CO5	-	-	3	-	-	2	2	2		-	-	2	3	K5,K6
Wt. Avg.	-	2.7	2.5	2	2.25	2	2.8	2	2	2	2	2	3	
PO-2.32														
Overall Mapping of the Course PSO-2.2														

APPLIED REGRESSION ANALYSIS

Cour	se Code									
C	redits	4								
Hour	s / Cycle	5								
Ca	tegory	Part-III	Core	Theo	ry					
Ser	mester	V								
Y	ear of	From the acad	lemic year 2023_2024	onwards						
Imple	mentation									
		1.To outline M	1. To outline Multiple Regression Models.							
Course	Objectives	2. Detection a	2. Detection and Transformation to Linearity models.							
	1	3.Multicolline	arity and its effects or	n inference a	nd forecasting.					
60				PSO	Bloom's Taxonomy Levels					
0		Course Outco	ome(s)	Addressed	(K1 to K6)					
On com	pleting the c	course successfi	ully, the student will b	be able to						
CO1	Recall abo	ut correlation c	concepts and derive	PSO1	K1					
	partial and	multiple correl	ation coefficients.	PSO2						
CO2	Outline a Modelswith	bout simple 1 examples.	Linear Regression	PSO2	K2					
CO3	Construct	Multiple 1	Linear Regression	PSO2	K3					
	models and	l testing it.		PSO3						
CO4	Analyze th	ne model viol	ations and Linear	PSO4	K4					
	Transforma	ations.		PSO5						
CO5	Explain	about Multic	ollinearity, Ridge	PSO4	K5,K6					
	Method-for	ward selectio	n and backward	PSO5						
	enmination	1								

	SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL									
Ι	Partial and Multiple correlation coefficients -	10	CO1	K1									
	Relationships among simple, partial and multiple		CO2	K2									
	correlation coefficients.		CO3	K3									
			CO4	K4									
			CO5	K5									
				K6									
II	Simple Linear Regression : Introduction, applications of	15	CO1	K 1									
	regression analysis, steps in regression analysis, simple		CO2	K2									
	linear regression model, parameter estimation, tests of		CO3	K3									
	hypothesis, confidence interval, predictions, measuring		CO4	K4									
	the quality of fit, regression line through the origin.		CO5	K5									
				K6									
III	Multiple Linear Regression: Introduction, Description	15	CO1	K1									
	of the data and model, parameter estimation,		CO2	K2									
	interpretations of regression coefficients, properties of		CO3	K3									
	the least squares estimations, multiple correlation		CO4	K4									
	coefficient, inference for individual regression		CO5	K5									
	coefficients, tests of hypothesis in a linear model,			K6									
	predictions.												
IV	Detection of model violations: Introduction, standard	20	CO1	K1									
	regression assumptions, types of residuals, Graphical		CO2	K2									
	methods – Before and After fitting a model, checking		CO3	K3									
	linearity and normality assumptions, leverage, influence		CO4	K4									
	and outliers, transformation of variables: introduction,		CO5	K5									
	transformations to achieve linearity, transformations to			K6									
	stabilize variance, detection of heteroscedastic errors,												
	removal of heteroscedasticity, weighted least squares,												
*7	logarithmic transformation of data.	4.5	0.01	774									
V	Multicollinearity and its effects on inference and	15	CO1	K1									
	forecasting- Detection of Multicollinearity – searching		CO2	K2									
	of linear functions of regression coefficients- Ridge		CO3	K3									
	Method, selection of variables-forward selection and		CO4	K4									
	backward elimination- Stepwise method (algorithms		CO5	K5									
D "	only).			Кб									
 Prescribed Books/ Lextbooks Gupta S.C and Kapoor V.K. (2003), Fundamentals of Mathematical Statistics, Sultan Chand & Sons. Samprit Chatterjee, Ali S. Hadi, Bertram Price (2000), Regression Analysis by Example, Wiley Series. Chatterjee S and Price B (1977) Regression Analysis by Example, John Wiley and Sons. Guiarati D. (2014) Econometrics by example. Bloomsbury Publishing 													
	u, D. (2017). Economicules by example. Dioomisbury I ubits	······ຮ·											

References

1. Johnson Jr, A. C., Johnson, M. B., &Buse, R. C. (1987). Econometrics: Basic and applied. New York

2. Draper N and Smith H (1998), Applied Regression Analysis, 3 rd edition, John Wiley and Sons.

3. Montgomery, D.C., Peck E.A, & Vining G.G. (2003), Introduction to Linear Regression Analysis, John Wiley and Sons, Inc. NY.

Suggested Reading

- 1. Draper, N. R. & Smith, H (1998), Applied Regression Analysis, John Wiley, 3rd edition.
- 2. Anushalllukkumbura(2020), Introduction to Regression Analysis.

- 1. <u>https://youtu.be/fjGO3mrjskc</u>
- 2. http://www.quora.com/How-would-linear-regression-be-described-and-explained-in-laymans-terms
- 3. Microsoft Word Chapter2-Regression-SimpleLinearRegressionAnalysis (iitk.ac.in)

	Course Articulation Matrix													
Course			Pro	ogramm	e Outco	mes			Programme Specific Outcomes					Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	-	3	-	-	3	3	3	-	3	3	-	-	-	K1
CO2	-	2	-	-	2	2	2	-	-	2	-	-	-	K2
CO3	-	3	-	3	3	3	3	-	-	3	3	-	-	K3
CO4	-	-	3	-	-	2	2	2	-	-	-	3	3	K4
CO5	-	-	3	-	-	2	2	2	-	-	-	3	3	K5, k6
Wt. Avg.	-	2.6	3	3	2.6	2.4	2.4	2	3	2.6	3	3	3	
	Overall Mapping of the Course PO-2.2 PSO-2													

STATISTICS USING R LANGUAGE

Cour	rse Code											
С	redits	4										
Hour	s / Cycle	5										
Ca	tegory	Part-III	Core	Theory								
Sei	mester	V										
Y	ear of	From the aca	demic year 2023_2024	onwards								
Imple	mentation											
		1. To impart programming skills using R Language										
Course Objectives		2. The goal is	s to teach Exploarator	y data analysis	using R language							
Course	Objectives	3. Utilize prog	3. Utilize programming skills to solve real-life problem using different									
	1	Statistical too	ls									
<u> </u>			omo(a)	PSO	Bloom's Taxonomy Levels							
CO		Course Outo	ome(s)	Addressed	(K1 to K6)							
On com	pleting the	course successf	ully, the student will b	be able to								
CO 1	Define the	basics of R pro	eliminaries, Data in	PSO1	K1							
	Statistics	and in R and	d Exploratory data	PSO3								
	analysis.		-									
CO2	Understan	d the basic co	omceptsof Data in	PSO1	K2							
	Statistics, I	Exploratory dat	a analysis, Statistical	PSO2								
	tools.			PSO3								
CO3	Choose the	e right statistic	al test for the given	PSO3	К3							
	data			PSO4								
CO4	Apply the s	statistical tools	in R programming	PS03	K4							
				PSO4								
				PSO5								
CO5	Evalluate t	he interpretation	on of Statistical tools	PSO2	K5,K6							
	using R pr	ogramming		PSO3								
				PSO4								
				PSO5								

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Basic R-Preliminaries: Modes-Vectors-Arithmetic operators and special values-Objects-Programming- Packages-Graphics-Customizing the workspace- Projects-Producing figures and output	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
п	Data in Statistics and in R: Types of Data-Objects that hold data-Data Organization-Data import, export and connections-Data Manipulation. Presenting data: Tables-Bar plots-Histograms-Dot charts-Scatter plots- Lattice plots-Three dimensional plots and contours	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	Exploratory data analysis: Graphical methods- Numerical summaries-Visual summaries- Single sample hypotheses testing: Null and alternative hypothesis- Large sample hypothesis testing-Small sample hypothesis testing-Arbitrary statistics of arbitrary densities-p values	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Power and sample size for single samples: Large samples-Small samples-Power and sample size of arbitrary densities. Two samples: Large samples-Small samples-Unknown densities. Analysis of variance: One way, fixed effects ANOVA	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Simple Linear regression: Simple linear models- Estimating regression coefficients-The model goodness of fit-Hypothesis testing and confidence interval-Model Assumptions-Model Diagnostics-Power and sample size for the correlation coefficient. Simple logistic regression: Binomial Logistic regression-Fitting and selecting models-Assessing goodness of fit-Diagnostics	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks

1. Cohen, Y., & Cohen, J. Y. (2008). Statistics and Data with R: An applied approach through examples. John Wiley & Sons.

2. Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. Sage publications.

References

- 1. Hothorn, T., & Everitt, B. S. (2014). A handbook of statistical analyses using R. CRC press.
- 2. Crawley, M. J. (2012). The R book. John Wiley & Sons.
- 3. Lumley, T. (2011). Complex surveys: a guide to analysis using R. John Wiley & Sons.
- 4. Kerns, G. J. (2010). Introduction to probability and statistics usin R. Lulu. com.

Suggested Reading

- 1. Zhang, Z., & Wang, L. (2017). Advanced statistics using R. Granger, IN: ISDSA Press. Accessed on December, 3, 2021.
- 2. Dalgaard, P. (2008). Statics and Computing Introductory Statistics with R. Springer.
- 3. Schumacker, R. E. (2014). Learning statistics using R. Sage Publications.
- 4. Hui, E. G. M. (2019). Learn R for Applied Statistics. Eric Goh Ming Hui.
- 5. Venables, W. N., & Smith, D. M. (2003). An introduction to R: notes on R: a programming environment for data analysis and graphics, version 1.9.

- 1. https://www.math.csi.cuny.edu/~verzani/R/AMS-MAA-Jan-09.pdf
- 2. <u>https://www.youtube.com/watch?v=_V8eKsto3Ug</u>
- 3. https://web.itu.edu.tr/~tokerem/The Book of R.pdf
- 4. <u>https://www.youtube.com/watch?v=eDrhZb2onWY</u>
- 5. https://cran.r-project.org/doc/contrib/Paradis-rdebuts en.pdf

Course Articulation Matrix														
Course			Prog	gramme	Outcom	es			Programme Specific Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	2	-	2	3	-	2	-	2	-	2	-	-	K1
CO2	-	2	-	2	3	2	2	-	2	2	2	-	-	K2
CO3	-	-	2	2	3	2	2	-	-	-	2	2	-	К3
CO4	-	-	2	2	3	2	2	2	-	-	2	2	2	K4
CO5	-	2	2	2	3	2	2	2	-	2	2	2	2	K5, K6
Wt. Avg.	- 2 2 3 2 2 2 2 2 2 2 2											2		
Overall Mapping of the Course PO- 2.14 PSO- 2														

MAJOR PRACTICAL – III

Cour	se Code										
C	redits	2									
Hour	s / Cycle	6									
Ca	tegory	Part-III	Core	Pra	ctical						
Sei	nester	V	V								
Y	ear of	From the acad	lemic year 2023_2024	onwards							
Impler	mentation										
Course	Objectives	 To produce Exploaring Solving real programming 	 To produced basic charts and descriptives measures using R Language Exploaring data analysis using R language Solving real-life problem using different Statistical tools with the help of R programming 								
СО		Course Outco	ome(s)	PSO Addresse	Bloo	m's Taxonomy Levels (K1 to K6)					
On com	pleting the c	course successfu	ully, the student will h	be able to							
CO1	Define the	e basis of R	programming like	PSO1		K1					
	vector and	Data frame.		PSO3							
CO2	Comprehen	nd the basic ic	leas of Exploratory	PSO2		K2					
	data analys	is		PSO3							
CO3	Select the	right statistical	l test for the given	PSO3		K3					
	data	0	C	PSO4							
CO4	Relate the	statistical tools	in R programming	PSO3		K4					
				PSO4							
CO5	Assess the	interpretation	of Statistical tools	PSO3		K5, K6					
	using R pro	ogramming		PSO4							
		_		PSO5							

EXCERICES

1. Operations on vectors

2. Operation on matrices

- 3. Creating and manipulating data frames.
- 4. Writing user defined functions for finding arithmetic mean, median, factorial

5. Bar and Pie charts.

- 6. Box plots for single and multiple groups.
- 7. Density and cumulative density plots for Binomial distribution
- 8. Density and cumulative density plots Poisson distribution
- 9. Density and cumulative density plots Normal distribution
- 10. Density and cumulative density plots Exponential distribution
- 11. Checking Normality using Histogram and Q-Q plot.
- 12. Correlation coefficient Pearson's,

13. Spearman.

- 14. Fitting of simple linear regression
- 15. F-test for equality of Variance
- 16. One sample t test
- 17. Two independent sample t test.
- 18. Paired t-test
- 19. Chi-square test for independence of attribute
- 20. Test of Randomness
- 21. Kolmogorov Smirnov test
- 22. Mann-Whitney U test
- 23. Median test
- 24. Kruskal Wallis test
- 25. Friedman's test
- 26. One Way ANOVA
- 27. Fitting of Multiple Linear Regression
- 28. Logistic Regression
- 29. Large sample proportion test
- 30. Chi-square test for goodness of fit

Course Articulation Matrix														
Course			Prog	gramme	Outcom	es			Pr	ogramm	Coordition I and			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	2	-	2	3	-	2	-	2	-	2	-	-	K1
CO2	-	2	-	2	3	2	2	-	-	2	2	-	-	K2
CO3	-	-	2	2	3	2	2	-	-	-	2	2	-	К3
CO4	-	-	2	2	3	2	2	-	-	-	2	2		K4
CO5	-	-	2	2	3	2	2	2	-	-	2	2	2	K5, K6
Wt. Avg.	-	2	2	2	3	2	2	2	2	2	2	2	2	
Overall Mapping of the Course PO- 2.14 PSO- 2														

TOTAL QUALITY MANAGEMENT

Course Code			
Credits	3		
Hours / Cycle	4		
Category	Part-IV	Elective	Theory
Semester	V	·	
Year of	From the academic year 2023_2024 onwards		
Implementation			
Course Objectives	 To understand the importance of quality in individuals, organizations, customers, suppliers To identify and describe the key component management (TQM) and understand how deployment. To demonstrate the value of understanding behavioural styles, problem solving with the use 	n modern bus and society. is and challen organizations g effective co of quality tool	siness scenarios to ges of total quality approach TQM ommunication and s.
со	Course Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)
On completing th	e course successfully, the student will be able to		
CO1	Study the basic concepts, tools and techniques of Total Quality Management(TQM)	PSO1	K1
CO2	Understand the concept of implementing the TQM to the organization	PSO2	K2
CO3	Apply the TQM process and design for better performance of the business scenario	PSO3 PSO5	К3
CO4	Analyze the data based approach through statistical control charts and solving problem in TQM	PSO4	K4
CO5	Evaluate the data based approach through various statistical measures in TQM which helps to further study	PSO3 PSO5	K5,K6

SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL								
Ι	Definition of TQM – TQM Framework – Quality Movement in India – Obstacles and Benefits of TQM. Leadership: Definition – Qulaity Leaders – concepts – Habits of Highly Effective People – Ethics. Customer Satisfiction: Customer Perception – Feedback – Employee Involvement : Teams – Empowerment. Continous Process Improvement: Improvement Strategies – Types of Problems – PDSA – Problem solving method – Kaizen – Six Sigma	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
п	Benchmarking: Definition – Reasons – Process – Understanding the current performance. Information Technology: Computer ans the quality function – The internet and other Electronic Communication – Information Quality Issues. Quality Mangement Systems: Benefits of ISOs – Sector Specfic Standards – ISO 9001 Requirements – Implementation – ISO 14000 series standards	13	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
III	Failure Mode and Effect Analysis: Reliability – Reliability Requirements – Failure Rates and Product Life Cycle – Intent, Team, Documentaion, Stages, design of FMEA – Process of FMEA.	13	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
IV	Statistical Process Control: Diagrams – Statistical Fundamental Measures – Standard Normal Distribution – Control Charts – Measurement of System Analysis	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								
V	Experimental Design: Basic Statistics – Hypothesis – Point and Interval Estimates – Factorial Design - Orthogonal Design. Taguchi's Quality Engineering: Loss Function – Orthogonal Arrays – Signal to Noise Ratio – Parameter design – Tolerance Design	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6								

Prescribed Books/Textbooks

1. Besterfield, D. H., Besterfield-Michna, C., Besterfield-Sacre, M., Besterfield, G. H., Urdhwareshe, H., &Urdhwareshe, R. (2017). Total Quality Management, 4/e. Pearson Education India.

References

- 1. Sharma, D. D. (2004). Total quality management: principles, practice and cases. New Delhi: Sultan Chand and Sons.
- 2. Evans, J. R., & Lindsay, W. M. (2005). The management and control of quality, First Indian Edition, Cengage Learning.
- 3. Janakiraman, B., & Gopal, R. K. (2006). Total quality management: Text and cases. PHI Learning Pvt. Ltd..

Suggested Reading

- 1. Briedyte, E. (2014). The importance of Total quality management in discount grocery stores in Ireland (Doctoral dissertation, Dublin Business School).
- 2. Njenga, E. W. (2017). Influence of implementation of quality management system on operational performance of technical training institutions in Meru County: A case of Nkabune Technical Training Institute, Kenya (Doctoral dissertation, University of Nairobi).
- 3. Shoshan, A. A. (2016). Application of total quality management (TQM) in Turkish construction industry. Çukurova University, Master Thesis, 131p.

- 1. <u>https://www.youtube.com/watch?v=5pMWmU_8lfI&list=PLPjSqITyvDeUUUwunyiwq41yJZofQEzMI</u>
- 2. <u>https://www.youtube.com/watch?v=MWQdHyDZGdY</u>
- 3. <u>https://www.youtube.com/watch?v=j1-Z2A_MGZI</u>
- 4. <u>https://www.youtube.com/watch?v=EZlbQc5-Cos</u>
- 5. https://www.youtube.com/watch?v=NWkFfjJT7ME
- 6. https://oms.bdu.ac.in/ec/admin/contents/160_P16MBA18_2020051812512021.pdf

	Course Articulation Matrix													
Course			Pro	gramm	e Outco	mes			Programme Specific Outcomes					Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	3	-	-	1	1	1	-	-	3	-	-	-	K2
CO3	-	-	3	1	1	-	2	2	-		3	-	2	K3
CO4	-	-	3	-	-	3	2	-	-	-	-	2	-	K4
CO5	-	-	3	-	1	-	-	-	-	-	2	-	2	K5,K6
Wt. Avg.	-	3	3	1	1	2	2.5	2	3	3	2.5	2	2	
Overall Mapping of the Course PO -2.07														
	PSO – 2.5													

SEMESTER-VI

DESIGN OF EXPERIMENTS

Course Code										
C	redits	5								
Hour	s / Cycle	6								
Ca	tegory	Part-III	Core		Theory	,				
Se	mester	VI								
Y	ear of	From the academic year 2023_2024 onwards								
Imple	mentation	-								
Course	Objectives	 Basic conce The goal is and Analysis of Statistical A Experiment as 	pts & principles of ex to impart a sound un of Covariance Techni nalysis of various des nd Incomplete block	xperim ndersta que sign lil desigr	ental de anding o ce CRD, a will be	sign will be introduced f the Analysis of Variance RBD, LSD, Factorial discussed.				
				F	PSO	Bloom's Taxonomy Levels				
CO		Course Outco	ome(s)	Add	ressed	(K1 to K6)				
On corr	pleting the o	course successfu	ally, the student will h	be able	$\frac{1}{501}$	K1				
	Analysis of of Co-varia	[°] Variance (AN nce (ANOCOV	OVA) and Analysis A)		501					
CO2	Understand	d the basi al design like	c concepts of CRD, RBD, LSD,	P P	SO1 SO2	K2				
	Factorial d	esign, Incomple	ete block design.	-	001					
CO3	Construct	the statistical	analysis of CRD,	Р	SO3	K3				
	RBD, LSI	D, Factorial d	lesign, Incomplete	Р	SO4					
	block desig	n and ANOCO	VA							
CO4	Distinguis	n the difference	e between various	SO3	K4					
	designs lil	ke CRD, RB	D, LSD, Factorial	P	SO4					
	design, Inc	omplete block	design	Р	SO5					
CO5	Evaluate t	he statistical a	nalysis of ANOVA	P	SO2	K5 &K6				
	(one way	and Two way) and ANOCOVA	A PSO4						
	(CRD and	RBD)		P	SO5					

SYLLABUS											
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY							
				LEVEL							
I	Analysis of Variance - One-way classification - Two-	18	CO1	K1							
	way classification - Two-way classification with m-		CO2	K2							
	observations per cell - Statistical analysis of the models		CO3	K3							
	(Fixed effect only)		CO4	K4							
			CO5	K5							
		40	0.04	Ko							
11	Terminology in experimental designs - Principles of	18		KI KO							
	experimentation - Completely randomised design -		CO2	K2 K2							
	Randomised block design - Latin square design - Their			K3							
	models - Least square estimates of the parameters and			N4 1/5							
	analysis - Statistical analysis of experiments (Fixed		005	K5 V(
	effect) - Missing plot technique for two missing values.			NO							
III	Factorial experiments - Two and three level	18	CO1	K1							
	experiments (3 ² experiments only) - Confounding in		CO2	K2							
	factorial experiments - Total and partial confounding.		CO3	K3							
			CO4	K4							
			CO5	K5							
				K6							
IV	Incomplete block designs - Balanced incomplete block	18	CO1	K1							
	designs - Parameters of BIBD - Intra block analysis of		CO2	K2							
	BIBD.		CO3	K3							
			CO4	K4							
			CO5	K5							
				K6							
V	Analysis of Covariance - One-way layout with one	18	CO 1	K 1							
	concomitant variable - RBD with one concomitant		CO2	K2							
	variable.		CO3	K3							
			CO4	K4							
			CO5	K5							
D "				K6							
Prescrib	ed Books/Textbooks		C1 1								
1. Gupta	, S. C., & Kapoor, V. K. (2019). Fundamentals of applied si	atistics. Sultr	ian Chano Waald Daa	a Driverto							
2. Guil, I	M. M., Gupta, M. K., & Dasgupta, B. (2015). Fundamentais (of statistics. V	Voria Pres	ss Private.							
Das, IV	I. IV., &Giff, IV. C. (1979). Design and analysis of experime.	ints. INEW Age	miemau	onai							
1 Cobb	G W (1998) Introduction to design and analysis of experi	ments New	Vork Spr	nger							
1. CODD, G. W. (1998). Introduction to design and analysis of experiments. New York: Springer.											
York											
3 Oehler	t G W (2010) A first course in design and analysis of exp	eriments									
4. Eriksso	$\Sigma_{\rm m}$ L. Johansson, E. Kettaneh-Wold N. Wikström C. &	Wold S (20	00). Desig	n of experiments							
Princi	ples and Applications, Learn ways AB. Stockholm.			n or experimento.							
Suggeste	ed Reading										
1. Cox, I	D. R., & Reid, N. (2000). The theory of the design of experi	ments. CRC	Press.								
<i>´</i>			-								

- Lawson, J. (2014). Design and Analysis of Experiments with R (Vol. 115). CRC press.
 Federer, W. T. (1955). Experimental design, theory and application.

- 1. https://nptel.ac.in/courses/111104075
- 2. <u>http://www.stat.tugraz.at/courses/files/DoE.pdf</u>
- 3. <u>http://home.iitk.ac.in/~shalab/anova/chapter4-anova-experimental-design-analysis.pdf</u>
 4. <u>https://www.youtube.com/watch?v=ZgZxAX9yrSI</u>
- 5. <u>https://www.youtube.com/watch?v=IEUTRhyoHNc&list=PLPjSqITyvDeWS9Lxp4jreGJ7eNsxHxJA8</u>

	Course Articulation Matrix													
Course			Prog	gramme	Outcom	es			Рт	ogramm				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO1	-	2	-	-	-	-	-	-	3	-	-	-	-	K1
CO2	-	2	-	-	2	2	2	-	2	2	-	-	-	K2
CO3	-	-	2	2	2	2	2	-	-	-	2	2	-	K3
CO4	-	-	2	2	2	2	2	2	-	-	2	2	2	K4
CO5	-	2	2	-	2	2	2	2	-	2	-	2	2	K5, K6
Wt. Avg.	-	2	2	2	2	2	2	2	2.5	2	2	2	2	
Overall Mapping of the Course PO-2 PSO-2.1														

APPLIED STATISTICS

Cour	rse Code										
C	redits	4									
Hour	s / Cycle	6									
Ca	tegory	Part-III	Core		Theory						
Sei	mester	VI									
Y	ear of	From the academic year 2023_2024 onwards									
Imple	mentation										
		1.To study abo	1.To study about Time Series and Index Numbers.								
Course	Objectives	2. To Estabish Process Control using variable and attribute control charts.									
		3.The usage o	3. The usage of sampling plans for quality check.								
60				Р	SO	Bloom's Taxonomy Levels					
CO		Course Outco	ome(s)	Add	ressed	(K1 to K6)					
On completing the course successfully, the student will be able to											
COI	Define Series,Inde	xNumbers,SQ(C,Sampling Plans	P	501	KI					
CO2	Classify dif	ferent types of	Time series, Index	P	SO 1	K2					
	Numbers	, Control Cha	arts and Sampling	PS	SO 2						
	Plans.		1 0								
CO3	Construct	different types of	of Seasonal Indices,	PS	503	К3					
	Price Inde	x Numbers,	Control Charts and	PS	SO5						
	Sampling I	Plans.									
CO4	Compare	the different	types of Moving	PS	SO 2	K4					
	Averages,	Price Index Nu	imbersand Control	PS	SO4						
	Charts.										
CO5	Discuss a	bout the App	plication of Time	P	SO1	K5,K6					
	Series,Inde	xNumbers,SQ(Cwith real time data	PS	PSO2						
	set.Determ	ine twoAuto-rea	gressive series.	PSO4							
				PS	SO5						

SYLLABUS										
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL						
I	Index numbers : Definition – Construction of index numbers – Problems and limitations - Interpretation of index numbers - Errors in index numbers - Tests of index numbers - Chain index - Cost of living index - Uses of index numbers- Deflating-Slicing	17	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
II	Introduction to time series - Analysis of time series - Uses of time series - Measurement of trend using various methods - Measurement of seasonal fluctuations by different methods - Merits and demerits of each method.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
III	Auto-regression : Definition - First order auto- regression – Second Order Auto-regressive series - Variate difference method and its applications.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
IV	Statistical Quality Control : Introduction to SQC - Uses, Tools, Process and Product Control - Control charts - Control charts for variables and attributes - Natural tolerance limits and specification limits.	20	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
v	Acceptance sampling by attributes: Rectifying inspection plans - Dodge and Romig rectifying sampling inspection plans - Single and double sampling plans for attributes - Single sampling versus Double sampling plans.	20	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
Prescribe 1. Gupta, Delhi. 2. Parima	ed Books/Textbooks S. C and Kapoor, V. K (2007), Fundamentals of Applied St Mukhopadhyay (1999), Applied Statistics, Books & Allied (tatistics, Sulta P) Ltd.	n Chand a	and Sons, New						
 References 1. Frederick, E. Croxton, Dudley, J. Cowden and Sidney Klein, (1972) Applied General Statistics, Prentice Hall of India Pvt. Ltd, New Delhi. 2. Douglas C. Montgomery and George C. Runger,(2016).Applied Statistics and Probability for Engineers,Wiley Publications. 3. D. R. Cox and Christl A. Donnelly,(2011)Principles of Applied Statistics, Cambridge publications Suggested Reading 1. W.N.Venables and B.D.Ripley, Modern Applied Statistics with S- Plus, Springer. 2. Croxton, F.EandCowden, D.J(1984):Appliedgeneralstatistics, PrenticeHallofIndia NOTE :THEORY 40 % PROBLEMS 60 % 										
Problem	only on Index number and time series									

- https://www.wallstreetmojo.com/index-number/
 https://www.britannica.com/topic/statistical-quality-control
 https://www.sciencedirect.com/topics/engineering/statistical-quality-control

	Course Articulation Matrix													
Course			Pro	ogramm	e Outco	mes			Р	rogramm	e Specifi	c Outcom	nes	Cognitive Level
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	-	2	-	-	-	-	-	-	2	-	-	-	-	K1
CO2	-	3	-	-	3	3	3	-	3	3	-	-	-	K2
CO3	-	-	3	3	3	-	3	3	-	-	3	-	3	К3
CO4	-	3	3	-	3	3	3	-	-	3	-	3	-	K4
CO5	-	3	3	-	2	3	3	2	2	2	-	2	2	K5, K6
Wt. Avg.	-	2.75	3	3	2.75	3	3	2.5	2.3	2.6	3	2.5	2.5	
Overall Mapping of the Course PO-2.8 PSO-2.58														

STOCHASTIC PROCESSES

Cour	rse Code										
C	redits	4									
Hour	s / Cycle	6									
Ca	tegory	Part-III	Core	Theory							
Sei	mester	VI	VI								
Imple	ear of	From the academic year 2023_2024 onwards									
Course	Objectives	 To transform To acquire To interpreduce queueing mode 	 To transform random variables in to random processes. To acquire knowledge about Markov Chain and related processes To interpret the steady state solution of the birth and death process in the queueing models. 								
СО		Course Outc	ome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K6)						
On com	pleting the c	ourse successf	ully, the student will h	be able to							
CO1	Define the classification	ne random on	process and its	PSO1	K1						
CO2	Demonstra the transition	te the Markov on probabilities	chain and explain	PSO1	K2						
CO3	Construct the relation	the Poisson priship with other	rocess and develop distributions.	PSO2	K3						
CO4	Dissect pro	cess in to birth	and death process.	PSO3	K4						
CO5	Interpret (queueing n	he birth and nodels.	death process in	PSO4	K5,K6						

	SYLLABUS									
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL						
Ι	Stochastic Processes: Elements of Stochastic Processes – Notion of a Stochastic Process – Specification of Stochastic processes – Stationary Processes.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
II	Markov Chain: Markov Chains – Definition and examples – Transition probability matrix – Order of a Markov Chain – Higher transition probabilities – Chapman-Kolmogorov equation.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
III	Poisson Process: Poisson Process– Postulates – Properties – Related distributions – exponential, uniform, geometric and negative binomial distributions.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
IV	Birth and Death Process: Pure Birth Process – Yule- Fury process – Birth and Death Process – Immigration - Emigration processes.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
V	Queuing Theory: Basic Elements in a queuing model – Operating Characteristics of queuing models – Classification of queuing models – Poisson Models (M/M/1): (∞ /FCFS) and (M/M/1): (N/FCFS) (Steady state solutions only).	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
K6 Prescribed Books/Textbooks 1. Medhi, J, Stochastic Processes, (2020) – 5 th Edition- New Age International (P) Ltd., Publishers, New Delhi. 2. Kapoor, V. K (2018), Operations Research – Quantitative Techniques for Management, Sultan Chand and Sons. New Delhi										
References 1. Bhat,B.R.(2000), Stochastic Models: Analysis and Applications, New Age International Publishers. 2. Sheldon M. Ross , Reprint (2013), Stochastic Processes, Second edition, Wiley Ltd, India. 3. Taha, H., 8th edition (2005), Operations Research: An Introduction, McMillan Publishing company.										
Suggeste 1. Taylor, York. 2. Ross, S 3. Durrett Switzerlan	 S. Tana, FL, our edition (2005), Operations Research: An Introduction, McMillan Publishing company. Suggested Reading 1. Taylor, H. M. and Samuel Karlin (1998). An Introduction to Stochastic modelling, Academic Press, New York. 2. Ross, S. M. (1983). Stochastic Processes, John Wiley and Sons, New York. 3. Durrett, R (2016) Essentials of Stochastic Processes, Third Edition, Springer International Publishing, Switzerland. 									

4. Hoel, P.G. Port S.C.and Stone, C. J. (1987). Introduction to Stochastic Processes, Waveland Press Inc., U.S.A.

5. Karlin, S and Taylor H. M. (1981). A Second Course in Stochastic Processes, Academic Press, New York. **Web Resources**

- 1. <u>https://searchworks.stanford.edu</u>
- 2. <u>https://www.journals.elsevier.com</u>
- 3. <u>https://www.routledge.com</u>
- 4. <u>https://www.researchgate.net</u>
- 5. <u>https://www.coursera.org</u>

6. https://web.ma.utexas.edu/users/gordanz/notes/introduction_to_stochastic_processes.pdf

Course Articulation Matrix														
Course	Programme Outcomes								P	rogramm	e Specifi	c Outcom	ies	Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	3	-	-	-	-	K2
CO 3	-	-	-	-	2	-	-	-	-	2	-	-	-	K3
CO 4	-	-	-	-	3	-	-	-	-	-	3	-	-	K4
CO 5	-	-	-	-	3	-	-	-	-	-	-	3	-	K5,K6
Wt. Avg.	-	3	-	-	3	-	-	-	3	2	3	3	-	
Overall Manning of the Course PO -3														
PSO -2.75										-2.75				

PROGRAMMING IN PYTHON

Course Code												
Credits		4	4									
Hours / Cycle		6										
Ca	tegory	Part-III	Core		Theory							
Ser	mester	VI	VI									
Y	ear of	From the academic year 2023_2024 onwards										
Imple	mentation											
Course Objectives		 To acquire knowledge in core python. To know how to compute basic statistics and statistical models through python packages. To create own python programs for statistical analysis. 										
		or ro create o	in python programo		<u>60</u>	Bloom?o Tomonom						
CO		Course Outco	ome(s)	Add	ressed	Levels(K1 to K6)						
On com	On completing the course successfully, the student will be able to											
CO1	State the b	asic concepts	of Python, features	P	K1							
	and compo	nents related to	Python program.	PSO2								
				P	503							
CO2	Understand	l various op	erators, control	P	K2							
	statements	ts import export file in Python. PSO2										
				P	503							
CO3	Use variou	s operations, s	K3									
	in Python.			P	<u>SO3</u>							
CO4	Explain v	arious arrays,	indexing and	P	503	K 4						
	visualizatio	on in Python.		P	504							
CO5	Develop sin	mple statistical	programs.	P	PSO3 K5,K6							
				P	504							
				P	SO5							

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	Introduction to Python – Origin of Python – Features of Python – Installation of Pythonand its packages – Writing and executing a Python Program. Data types – Build-in data type –Identifier and Reserved words – Name conversions in Python.	15	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
II	Operators in Python – Statistical Functions – Input and output statements – ControlStatements – if, ifelse and ifelifelse statements – Loops – While – for – infinite – nested.Else Suite – Break – Continue – Pass – Assert – return statements. File Operations – Import andExport of Excel, CSV files	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
III	Operations in List, Tuples, Dictionary, Set and Frozen Set – String Operations –Functions – Defining and Calling Function – Recursive function – in built functions – DataType conversions – Date and Time.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	NumPy arrays – one-dimensional array – Multidimensional arrays – Slicing andaddressing arrays – SciPy – scipy.integrate, scipy.optimize, scipy. interpolate. DataManipulation with Pandas – Data Indexing and Selection, Operating on Data in Pandas,Handling Missing Data, Hierarchal Indexing, Combing Datasets – Visualization with Matplotlib:Simple Line Plots – Simple Scatter Plot – Heat Map – Histograms – Box plot.	21	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Measures of central tendency – Measure of dispersion. Parametric testing of Statistical hypothesis – One Sample t test – Two sample t test – paired t test – one way ANOVA- two way ANOVA – Correlation and Regression.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

Prescribed Books/Textbooks

- 1. NageswaraRao, R, Core Python Programming, 2nd edition, Dreamtech Press, New Delhi (2018).
- 2. Practical statistics for Data Scientists by Peter Rruce, Andrew Bruce and Peter Gedeck

published by Oreilly.

References

- 1. Wesley J.Chun, Core Python programming, 2/e, Pearson education (2010).
- 2. Mark Lutz, Programming Python, 4/e, O'Reilly Media (2010).
- 3. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition by William McKinney published by oReilly (3 rd Edition will be released by Sep 2022).
- 4. Hands on matplotlib learn plotting and visualizations with python3 by AshwinPajankar published by apress.
- 5. Haslwanter, T, An Introduction to Statistics with Python with Application in the Life Sciences, Springer, Switzerland (2016).

Suggested Reading

- 1. Mark Summerfield, Programming in Python 3, Pearson Education (2009).
- 2.Python Notes for Professionals GoalKicker.com

- 1. https://www.youtube.com/c/365DataScience
- 2. https://www.youtube.com/c/AppliedAICourse
- 3. https://www.youtube.com/c/DataEngineeringSimplified
- 4. https://www.youtube.com/c/DataScienceAlivemachine learning artificial tamil
- 5. <u>https://www.youtube.com/c/Freecodecamp</u>
- 6. <u>https://www.youtube.com/c/Datacamp</u>
- 7. https://www.youtube.com/c/Intellipaat
- 8. https://www.youtube.com/c/khanacademy
- 9. https://www.youtube.com/user/krishnaik06
- 10. https://www.youtube.com/c/NeetCode

Course Articulation Matrix														
Course	Programme Outcomes									ogramm				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Cognitive Level
CO 1	-	3	-	2	3	2	3	-	2	2	3	-	-	K1
CO 2	-	2	2	2	3	2	3	-	2	2	3	-	-	K2
CO 3	-	2	-	2	3	2	3	-	-	2	3	-	-	K3
CO 4	-	-	2	2	2	2	3	-	-	-	3	2	-	K4
CO 5	-	-	3	2	2	2	3	2	-	-	3	2	2	K5,K6
Wt. Avg.	-	2.3	2.3	2	2.6	2.2	3	2	2	2	3	2	2	
	PO-2.3												-2.3	
Overall Mapping of the Course											PSC) -2.2]	

MAJOR PRACTICAL-IV

Cour	se Code											
C	redits	3										
Hour	s / Cycle	6										
Ca	tegory	Part-III	Core		Practic	al						
Sei	mester	VI										
Y	ear of	From the acad	lemic year 2023_2024	onwar	ds							
Impler	mentation											
Course Objectives		 In order to provide practical training on the application of Design of Experiments 2Aiming to provide useful preparation in the application of Statistical Quality Control 3. Solving real-life problem using Design of Eperiment and Statistical Quality Control 										
со		Course Outco	ome(s)	P Add	PSO ressed	Bloom's Taxonomy Levels (K1 to K6)						
On com	pleting the c	course successfu	ully, the student will	be able	to							
CO1	Define th Experimen	ne foundation t and Statistical	of Design of Quality Control	P	SO1	K1						
CO2	Compreher of Experim	nd the elementa ent and Statisti	ary ideas of Design cal Quality Control	P	PSO2 K2							
CO3	Select the data	right statistical	tool for the given	P	SO3	К3						
CO4	Relate the application	K4										
CO5	Assess th application	ne interpretat	ion of practical	P P	SO4 SO5	K5, K6						

EXCERICES

Design of Experiments

- 1. One way Classification (Equal size)
- 2. One way Classification (Unequal size)
- 3. Two Way Classification (One Observation Per Cell)
- 4. Two Way Classification (m Observation Per Cell)
- 5. Completely Randomized design (CRD) with Equal Replications
- 6. Completely Randomized design (CRD) with Unequal Replications
- 7. Randomized Block Design (RBD) without interaction
- 8. Randomized Block Design (RBD) with interaction
- 9. Randomized Block Design with one missing value
- 10. Randomized Block Design with two missing value
- 11. Latin Square Design
- 12. Latin Square Design with one missing value
- 13. 2² Factorial Experiment
- 14. 2³ Factorial Experiment
- 15. Total Confounding in 23 Factorial Experiment
- 16. Partial Confounding in 23 Factorial Experiment
- 17. 3² Factorial Experiment
- 18. Balanced Incomplete Block Design

Statistical Quality Control

- 1. \overline{X} chart and R chart (Two Problems)
- 2. \overline{X} chart and S chart (Two Problems)
- 3. p chart (Fixed sample size)
- 4. p chart (Variable sample size)
- 5. np chart
- 6. c chart
- 7. u chart
- 8. Single Sampling plan for attributes
- 9. Single Sampling plan for attributes (varying acceptance number)

10. Double Sampling plan for attributes

Course Articulation Matrix														
Course Outcomes		Programme Outcomes								rogramm	e Specific	Outcom	es	Cognitive
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	Level
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	K1
CO 2	-	1	-	-	1	2	2	-	-	3	-	-	-	K2
CO 3	-	-	-	2	3	-	2	-	-	-	3	-	-	К3
CO 4	-	-	2	-	-	2	2	-	-	-	-	3		K 4
CO 5	-	-	2	-	-	2	2	2	-	-	-	2	2	K5, K6
Wt. Avg.	-	2	2	2	2	2	2	2	3	3	3	2.5	2	
	Overall Mapping of the Course PO- 2 PSO- 2.7													