DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM (CBCS)

B.Sc (Chemistry) Learning Outcome-based Curriculum Framework (LOCF) SYLLABUS

Effective from 2023 - 2024 onwards

MADRAS CHRISTIAN COLLEGE (AUTONOMOUS) Affiliated to University of Madras Tambaram Chennai – 600 059

July 2023

MADRAS CHRISTIAN COLLEGE

VISION

Madras Christian College aspires to be an Institution of excellence transforming lives through education with a commitment to service.

MISSION

The Madras Christian College (MCC), with the inspiration of the love of God, offers to people of all communities education of the whole person, which is congruous with God's revelation in Christ of the true nature of humanity and is appropriate to the needs of India and of the world.

Graduate Attributes

The Madras Christian College defines the philosophy underpinning its academic programmes and student life experience on campus through the Graduate Attributes (GA), that describe the knowledge, competencies, values and skills students imbibe for holistic development and contribution to society. These attributes encompass characteristics that are transferable beyond the domain of study into the national and international realm fostered through curricular, co-curricular and extra-curricular engagements.

GA 1: Intellectual Competencies

• Graduates of MCC have a comprehensive and incisive understanding of their domain of study as well as the capability for cross-disciplinary learning.

• They have the ability to apply the knowledge acquired through the curriculum as well as selfdirected learning to a broad spectrum ranging from analytical thinking to synthesise new knowledge through research.

• Forming independent individual opinions regarding academic cores and socially relevant issues

GA 2: Professional Ethics

• Graduates of MCC develop ethical and professional behaviour, which will be demonstrated in their chosen careers and constructive citizenship roles.

• They imbibe intellectual integrity and ethics in scholarly engagement and develop a spirit of inclusiveness through interactions with people of special needs and diversity.

GA3: Leadership Qualities

• Graduates of MCC inculcate leadership qualities & attitudes, and team behaviour along democratic lines through curricular, co-curricular and extra-curricular activities

• They develop managerial and entrepreneurial skills to ideate and create new opportunities along with career readiness and capacity to take up various competitive exams.

GA 4: Holistic Skill Development

- Graduates of MCC develop critical thinking, problem-solving, effective communication, emotional and social skills
- They develop digital competency to live, learn and serve in society.

GA 5: Cross-Cultural Competencies

• Graduates of MCC imbibe cross-cultural competencies through engaging with diverse linguistic, ethnic and religious communities providing scope to understand, accept and appreciate individuals at local, national and international levels.

• They develop a global perspective through contemporary curriculum, culture, language and international exchange programmes

GA 6: Service-Oriented Focus

- Graduates of MCC have sensitivity to social concerns and a conviction toward social justice through a commitment to active social engagement.
- They are endowed with a strong sense of environmental awareness through the curriculum and campus eco-system.

GA 7: Value-Based Spiritual Development

- Graduates of MCC are rooted in the principles of ethical responsibility and integrity permeated with Christian values leading to the building of character.
- They develop virtues such as love, courage, unity, brotherhood, industry and uprightness.

Programme Outcomes

Programme Outcomes (POs) of Madras Christian College define the minimum level that students are expected to do, achieve and/or accomplish in order to graduate from a particular programme. These Outcomes are a framework to assess the nature of learning activity experienced within the programme.

POs for Under Graduate Programmes

UG Programmes are designed to have the following outcomes:

On successful completion of the Undergraduate programme, the students will be able to

PO	PO	Descripton of PO	Mapped with GA
PO 1	Language Skills	 Demonstrate oral and written skills to effectively communicate in English and Languages of their choice Apply reading and listening skills to facilitate access to knowledge resources and understanding 	GA1, GA4, GA5
PO 2	Domain Knowledge	 Acquire knowledge of basic concepts, theories and processes through study of core courses in respective programmes Apply and Analyze domain specific knowledge to emerging areas of academia and industry Assess, adapt and develop domain specific transferrable skills to new/unfamiliar context 	GA1, GA3, GA4, GA5
PO 3	Interdisciplinary knowledge	 Identify and determine relationships across disciplines Acquire and apply interdisciplinary knowledge for holistic academic development 	GA1, GA4
PO 4	Digital Skills	 Acquire computer skills and their application relevant to classroom and self-directed web-based learning Familiarize with and use domain-related software resources, computational skills and digital tools for data analysis, visualization and interpretation Ethically apply digital skills to creatively communicate a wide range of ideas and issues related to academic experiences 	GA1, GA2, GA3, GA4, GA6
PO 5	Analytical skills	• Develop the ability to think critically and relate learning to academic, professional and real-life problem solving	GA1, GA2, GA4, GA6

		• Apply empirical knowledge and skills to identify and collect quantitative and qualitative data to analyze and formulate evidence-based suggestions and solutions	
PO 6	Academic writing & Presentation skills	 Formulate and document results obtained in laboratory, case studies, project work, field work and internships Effectively communicate through engaging presentations using methodologies appropriate to the discipline 	GA1, GA4, GA5
PO 7	Innovation and Creativi	 ty Demonstrate transferable capabilities and intrapreneurial skills that are relevant to the industry and other employment opportunities Develop entrepreneurial skills and generate intellectual property 	GA1, GA2, GA3
PO 8	Social Engagement and Responsibility	 Demonstrate the ability to link classroom learning with social concerns through service learning and outreach programmes. Enhance positive personality traits to adapt to changing circumstances and demonstrate leadership qualities as an individual and a member of cross-cultural and multi-disciplinary teams. Appreciate environmental consciousness and sustainability Draw valuable insights from one's own spiritual tradition and that of others for peaceful coexistence and general wellbeing 	GA1, GA2, GA5, GA6, GA7

PROGRAM SPECIFIC OUTCOMES (PSO's) of B.Sc. Chemistry

At the time of graduation they would be able to

PSO #	Statement	Mapped with PO#
PSO 1	Understand various fundamental concepts in physical,	PO2
	organic and inorganic chemistry.	
PSO 2	Recognize various structural characteristics of the	PO2
	chemical compounds	
PSO 3	Analyze and solve qualitative and quantitative problems	PO2
	in chemistry.	
PSO 4	Recognize the importance of various chemical concepts	PO3
	and apply in biological, environmental & industrial	
	processes and in everyday life.	
PSO 5	Acquire logical approach to a given concept in chemistry	PO5
	for comprehension and to express it coherently.	
PSO 6	Learn to design (build, modify, evaluate and screen)	PO4
	molecules using open-source computational tools for	
	property prediction and apply the gained knowledge	
	to design drugs.	
PSO 7	Use bench skills and psychomotor skills to translate the	PO5
	theoretical knowledge to experimental chemistry.	
PSO 8	To develop content knowledge, creative thinking,	PO7
	collaboration, creativity and communication skills from	
	the available literature and experimentation.	

Weightage correlation of POs/PSOs to each CO for Course Articulation Table

Weightage for Correlation						
$0 \leq C \leq 5\%$	No correlation	-				
$5\% < C \le 40\%$	Low / Slight	1				
40% <c 60%<="" <="" td=""><td>Moderate</td><td>2</td></c>	Moderate	2				
60% ≦C < 100%	Substantial / High	3				

Curriculum Template for B.Sc. Chemistry

Effective from – 2023-24

SEM	PART	COURSE	TITLE	WEEKLY	EXAM	M	CREDITS	
		CODE		HOURS	HOURS	CA	ESE	
Ι	IV	GC01	Chemistry in Everyday Life	4	3	50	50	2
	III	BC01	Basic Chemistry I	3	3	50	50	4
	III	BC02	Basic Chemistry II	3	3	50	50	4
	III	BC03	Practical I – Volumetric Analysis	4	-	-	-	-
II	IV	GC02	Philosophy and History of Science	4	3	50	50	2
	III	BC04	Basic Chemistry III	3	3	50	50	4
	III	BC05	Chemistry of Non- metals	3	3	50	50	4
	III	BC03	Practical I – Volumetric Analysis	4	3	50	50	4
III	III	BC06	Organo-Oxygen Chemistry	3	3	50	50	4
-	III	EC01	Applied Chemistry	3	3	50	50	3
	III	BC07	Practical II – Inorganic Qualitative Analysis	4	-	-	-	-
	IV IC01		Interdisciplinary – Biological Chemistry	4	3	50	50	3
	III	AC01	Allied Chemistry I (for Physics and Mathematics students)	4	3	50	50	3
	III	AC02	Allied Chemistry I (for Botany and Zoology students)	4	3	50	50	3
	III	AC03	Allied Chemistry Practical	2	-	-	-	-
IV	III	BC08	Classical Thermodynamics	3	3	50	50	4
	III	EC02/EC03	Food and Cosmetics Chemistry / Green and Nano Chemistry	3	3	50	50	3
	III	BC07	Practical II – Inorganic Qualitative Analysis	4	3	50	50	4
	III	IC02	Environmental Studies – UGC	4	3	50	50	
	III	AC04	Allied Chemistry II (for Physics and Mathematics students)	4	3	50	50	3
	III	AC05	Allied Chemistry II (for Botany and Zoology students)	4	3	50	50	3

	Ш	AC03	Allied Chemistry	2	3	50	50	
	111	AC05	Practical	2	5	50	50	4
V	III	BC09	Coordination Chemistry	3	3	50	50	4
	III	BC10	Organo-Nitrogen Chemistry	3	3	50	50	4
	III	BC11	Chemical Kinetics and Surface Chemistry	3	3	50	50	4
	III	BC12	Basic Analytical Techniques in Chemistry	5	3	50	50	5
	III	BC13	Practical III – Organic Analysis, Gravimetry& Preparation	6	-	-	-	-
	III	BC14	Practical IV – Physical Chemistry practical	4	-	-	-	-
	IV	SC01	Computer Aided Chemistry	2	3	50	50	3
	IV	SC02	Environmental Chemistry	4	3	50	50	3
VI	III	BC15	Chemistry of Metals and Nuclear chemistry	5	3	50	50	5
	III	BC16	Natural Products, Pharmaceuticals and Spectroscopy	5	3	50	50	5
	III	BC17	Phase Rule and Electrochemistry	5	3	50	50	5
	III	EC04/EC05	Entrepreneurship skill for chemist / Advanced Chemistry	3	3	50	50	3
	III	EC06	Project Based Learning	2	-	25	-	2
	III	BC13	Practical III – Organic Analysis, Gravimetry& Preparation	6	6	50	50	6
	III	BC14	Practical IV – Physical Chemistry Practical	4	3	50	50	4

Curriculum Overview Table							
Part	Credits	Hours					
I Tamil / Other languages	12	16					
II English	12	16					
III – Core theory + Practical	74	83					
III – Core Elective	11	11					
III – Internship / Field work	NIL	NIL					
III – Project	NIL	NIL					
III – Allied theory	12	16					
III – Allied Practical	8	8					
IV – GC	4	8					
IV - GE	3	4					
IV – ID	3	4					
IV – EVS	2	4					
IV – Computer Training	3	2					
IV – Value Education	2	4					
IV – Personlaity Development	3	4					
V – Extension Activity	1	0					
Tota	140	180					

CHEMISTRY IN EVERY DAY LIFE

Cours	e Code					
Cre	dits	2				
Hours	/ Cycle	4				
Cate	gory	Part IV	General Course		Theo	ry
Sem	ester	Ι				•
Yea	r of	From the aca	demic year 2023-24 onwards	5		
Implem	entation					
Cor Obje	ırse ctives	□ To introduc everyday life 1	e the importance / role of chemis to non-chemistry students.	stry in tl	he materials / o	compounds of
CO#		Cou		PO Addressed	Bloom's Taxonomy Levels (K1 to K5)	
On com	pleting the	e course succes	sfully, the student will be able	e to		
CO1	List the such as cosmetic environm	common chem building ma s, fuel, drugs, nent	icals in materials of everyday terials, plastics, fertilises, f and explosives in relation to	y life food, o the	PO3	K1
CO2	O2 Outline the i) preparation and application of chemicals used in everyday life ii) role of chemicals involved in water and air pollution					K2
CO3 Identify the i) reasons for the water pollution and air pollution ii) various nutrients present in the food iii) genera formulation of cosmetics. iv) chemicals present in the fuel v) chemicals of plastics, building materials an pharmaceutical drugs					PO3	К3

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	 1.1. General survey of chemicals used in everyday life. 1.2 Air-Components and their importance; photosynthetic reaction, air pollution, green house effect and their impact on our life style. 1.3 Water – Sources of water, qualities of potable water, soft and hard water, methods of removal of hardness – water pollution. 	12	CO1- CO3	K1 – K3

Π	2.1 Building materials – cement, ceramics, glass and refractories – definition, composition and application	12	CO1-	K1 – K3
	only.		CO3	
	2.1 Plastics: Polythene, PVC, bakelite, polyesters, melamine formaldehyde resins – preparation, structures			
	and uses.			
III	3.1 Food and Nutrition: Carbohydrates, Proteins, Fats –	12	CO1-	K1 – K3
	definition and their importance as food constituents; balanced diet: Calorie: minerals and vitamins (sources		CO3	
	and their physiological importance).		005	
	3.2 Cosmetics: Tooth pastes, face powder, soaps and			
	detergents, shampoos, nail polish, perfumes – general formulation and preparations – possible hazards of			
	cosmetics use.			
IV	4.1 Chemicals in food production – fertilizers – need,	12	CO1-	K1 – K3
	natural sources; urea, NPK fertilizers and super		CO3	
	4.2 Fuel – classification – solid, liquid and gaseous;			
	nuclear fuel – examples and uses; fuel cells – principle			
	and uses only.			
V	5.1 Pharmaceutical drugs – analgesics and antipyretics -	12	CO1-	K1 – K3
	5.2 Colour chemicals – pigments and dyes – examples		CO3	
	and applications.		005	
	5.3 Explosives – classification and examples.			
Textbook	KS			
1. Chemi	cal Process Industries, R. Norris Shreve and Joseph A.Brin	k,Jr.,4th Edit	ion, McC	Fraw Hill, 1977
2. Perfun	nes, Cosmetics and Soaps, W.A.Poucher (Vol.3), 9th Edition	n, Springer S	Science B	usiness Media,
1995 3 Enviro	nmental Chemistry, A K De, 6th Edition, New Age Internat	tional New I	Delhi 20	06
Reference	es		Denn , 20	00
1. Engine	ering Chemistry by Jain and Jain; Dhanpat Rai Publication	n Co. 2014.		
1				

2. A Text Book of Environmental Chemistry and Pollution Control, S.S. Dara–S. Chand Publication 2012.

B.Sc. Course Articulation Matrix																	
Course Outcomes	Program Outcomes Program Specific Outcomes									Cognitive Level							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K1
CO 2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K2
CO 3	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K3
Wt. Avg.	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
Overall Mapping of the Course PO-3																	

BASIC CHEMISTRY I

Course	e Code									
Cre	dits	4								
Hours	/ Cycle	3								
Cate	gory	Part III	Core	Theo	ory					
Sem	Semester I									
Yea	r of	From the aca	demic year 2023-24 onwards							
Implementation										
Cou Objec	ırse ctives	 To impart volumetric To strengtl periodic ta To provide representin To educate compreher 	the knowledge on stoichiometric analysis hen the fundamental knowledge o ble, atomic spectra, quantum num insight to the students on the util g chemical reactions the students on the fundamental d the molecular interactions and p	calculations and the f the students in con bers and elementary ity of various types aspects of forces and reactivity.	principles of cepts related to thermodynamics of conventions in l concepts to					
CO#		Cou	rse Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On comp	oleting the	e course succes	sfully, the student will be able	to						
CO1	(i) Relate and (ii) F the first 1 and perior	e mass, moles, c Recall the basic aw of thermody odic changes in	oncentrations, and various titrations of organic chemistry ynamics, models of atomic struct properties.	ons PSO1, and PSO2 ture	K1					
CO2	(i) Comp models a reactions thermody	pare and contra and periodic p and (iii) ynamics with da	st the theories of titrations, ato roperties, (ii) Classify the orga illustrate the principles ay-to-day examples.	mic PSO1, anic PSO2 of	K2					
CO3	O3Apply (i) the principles of stoichiometry, atomic structure and periodic properties to solve numerical and analytical problems, and (ii) fundamentals of thermodynamics and organic reactions to solve related numerical and analytical problemsPSO1, PSO2, PSO3K3									
CO4	CO4 (i) Analyse the suitability of indicators, conclusions of atomic models, position of the elements in the periodic table and (ii) Examine the laws of thermodynamics (iii) analyse the organic reactions and derive inferences.									
CO5	The organic reactions and derive inferences.O5Evaluate (i) the advantage and disadvantages of various titrations (ii) the recent models of atomic structure, (iii) the properties of elements with periodic table, (iv) laws of thermodynamics, and (v) the criteria for organic reactions.PSO3, PSO4K5									

UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
T		0	001	
1	1.1 Stoichiometry: Mole concept, Molality, Molarity, Equivalent weight and Normality (Numerical	9	COI-	KI - KS
	problems)		COS	
	1.2 Principles of volumetric analysis: Standard solution.			
	Requirements of primary standard and			
	Standardization; Types of titrations; Principles of			
	acid-base titration, different types of acid-base			
	titrations and theories of acid – base indicators;			
	Principle of complexometric titrations and theory of			
П	2.1 Deriodia Droperties: Effective nuclear charge and	0	CO1	V1 V5
11	2.1 Periodic Properties. Effective nuclear charge and Slater's rule: Trends in periodic properties (atomic	9	C01-	$\mathbf{K}\mathbf{I} = \mathbf{K}\mathbf{J}$
	covalent and ionic radii, ionization energy, electron		CO5	
	affinity and electronegativity); Iso-electronic		005	
	species;			
	2.2 Factors affecting ionization potential, electron			
	affinity and electronegativity; Different approaches			
	to electronegativity scale.			
III	3.1 Atomic spectra and quantum theory of energy -	9	CO1-	K1 – K5
	black body radiation – photoelectric effect –			
	Compton effect.		CO5	
	3.2 Bonr model of the hydrogen atom – wave particle			
	3.3 Quantum numbers – shapes of atomic orbitals –			
	degenerate energy states.			
	3.4 Pauli's exclusion principle – singlet and triplet			
	electronic states – Aufbau principle – electronic			
	configuration of atoms.	0		T7 1 T7 7
IV	4.1 Definition of thermodynamic terms: system,	9	CO1-	KI - K5
	extensive properties State and path functions and		CO5	
	their differentials (exact and			
	inexact).Thermodynamic process (Isothermal,			
	Adiabatic, Isobaric, Isochoric, cyclic, reversible and			
	irreversible processes). Zeroth law of			
	thermodynamics.			
	and statement of first law enthalpy(U).			
	mathematical formulation concept of internal			
	energy(U) & enthalpy(H) (numerical problems).			
	4.3 Heat capacity, relation between Cp and Cv			
T 7	(numerical problems).	0	001	17.1 17.5
V	5.1 Types of organic reactions – substitution,	9	COI-	KI – KJ
	(mechanism not required).		CO5	
	5.2 various types of arrows in organic chemistry.		005	
	electron pushing/arrow pushing - rules, common			
	mistakes in electron pushing;			

	5.3 Energy profile diagram for a one step and two step	
	reactions;	
	5.4 Electronegativity and bond polarity, calculation of	
	formal charges, molecular dipole moments,	
	intermolecular forces - dipole-dipole, London	
	dispersion and hydrogen bonding, polarity effects on	
	solubility;	
	5.5 Resonance – rules for resonance forms.	
Textbo	ooks	
1.	Principles of Inorganic Chemistry, Puri B.R, Sharma L.R & Kalia K.C., Milestone Publishers Distributors, New Delhi, 2008	and
2	Test Deale of Disciple Chamistree DI Cani O D Discussed a U N Deale Sector Chamistree DI Chamistree	
۷.	2011	ons,
3.	Essential of Physical Chemistry, Arun Bahl, B.S. Bahl, G.D. Tuli, S. Chand Publishers, 2009	
4.	Principles of Physical Chemistry, B.R. Puri, L.R. Sharma, M.S. Pathania, 47th edition, Vishal	
	Publishing Co, 2016	
5.	Organic chemistry, Leroy G. Wade, 8th Edition, Pearson Education Inc., 2019.	
Refere	ences	
1.	Concise Inorganic Chemistry, Lee, J.D., 5th Edition, New Delhi, Oxford University Press, 200	8.
2.	Physical Chemistry Peter Atkins, Julio De Paula, 9th edition, W. H. Freeman, 2009,	

Physical Chemistry, Peter Atkins, Julio De Paula, 9th edition, W. H. Freeman, 2009.
 Organic Chemistry, W.H. Brown, C.S. Foote, B.L. Iverson, E.V. Anslyn, 6th Edition, Cengage Learning, 2012.

								B.Sc. Cou	irse Articul	ation Matri	х						
Cour				Progra	am Outcon	nes					Pr	ogram Spec	ific Outcor	nes			KL
se																	
omes	Р	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
	0 1																
CO 1	-	3	-	-	-	-	-	-	3	2	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	3	2	-	-	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	3	2	3	-	-	-	-	-	K3
CO 4	-	3	1	-	-	-	-	-	-	-	3	3	-	-	-	-	K4
CO 5	-	3	1	-	-	-	-	-	-	-	3	3	-	-	-	-	K5
Wt.	-	3	1	-	-	-	-	-	3	2	3	3	-	-	-	-	
Avg.												Overall M	apping of t	he Course	PO: 2.00		
	PSO: 2.75																

BASIC CHEMISTRY II

Course	e Code											
Cre	dits	4										
Hours	/ Cycle	3										
Cate	gory	Part III	Core	Theo	ory							
Sem	ester	Ι	I									
Yea	r of	From the academic year 2023-24 onwards										
Implem	entation											
Cou Objec	ırse ctives	 To learn th To learn th To study the fundament addition and To study the To have and aromatic construction of the study the the term of the study the term of term of	e various types of bonds and rela e failures of classical mechanics he chemistry of alkanes and alker al concepts such as reactivity-sel- id elimination reactions. he chemistry of alkynes and arom h insight into the concept of arom compounds.	ted theories to comp and the birth of quan es leading to an und ectivity, ring strain, o atic hydrocarbons. aticity to appreciate t	rehend properties tum mechanics erstanding of few orientation in the stability of							
CO#		Cou	rse Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)							
On comp	oleting the	e course succes	sfully, the student will be able	to								
CO1	To recall theories domains alkanes a	and relate th in inorganic, (ii) Molecular nd alkenes	e (i) types of bonding and to organic and physical chemic r properties (iii) nomenclature	heir PSO 1 istry e of	K1							
CO2	To comp quantum understar aromatic	are and contras mechanics nding the struct hydrocarbons	st (i) different theories in bonc and (ii) various theories ture and properties of aliphatic	ling, PSO 3 in and	K2							
CO3	To apply and react theories t	(i) the bonding ivity of the mo to derive Schro	theories in arriving at the struct lecules and (ii) quantum mechan dinger wave equation	ture PSO 4 nical	К3							
CO4	To analy propertie	vse the nature s of molecules	, stability, chemical bonding	and PSO 2	K4							
CO5	To solve analytical and numerical problems related to the basic concepts in chemistry 4 K5											

UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMV
				LEVEL
Ι	 1.1 Hydrogen bond: Types and its effect on the boiling point and solubility. 1.2 Electrovalent bond: General characteristics of electrovalent compounds; Polarising power and polarisability: Fajan's rules, Applications of Fajan's rules- Acidic nature of oxides and melting point, solubility, hydration energy; lattice energy and thermal stability of ionic compounds - Born - Haber cycle. 	9	CO1- CO5	K1 – K5
Π	2.1 Covalent bond: Formation of σ and π bonds; Hybridization and shapes of molecules – VB and VSEPR theory. 2.2 MO theory: Bonding, antibonding and nonbonding orbitals; MO configurations of diatomic molecules (H2, He2, N2, O2, C2, B2, F2, CO, NO and their ions). Comparison of VB and MO theories. 2.3 Effect of molecular structure on dipole moment based on electronegativity, planarity and geometrical isomerism.	9	CO1- CO5	K1 – K5
III	 3.1 Classical mechanics – Limitations; Quantum mechanics – Postulates; Eigen function and eigen values (definitions only); Comparison between classical and quantum mechanics 3.2 Operators and their properties (problems) – Derivation of Schrodinger wave equation (time dependent, time independent). 3.3 Particle in a one-dimensional box (simple numerical problems). 	9	CO1- CO5	K1 – K5
IV	 4.1 Alkane: IUPAC nomenclature, sources, mechanism of halogenation of alkanes – reactivity-selectivity principle; Cycloalkanes – Baeyer's strain theory – Quantification of ring strain (heats of combustion measurements). 4.2 Alkene: IUPAC nomenclature; stability of alkenes – Quantification (heats of hydrogenation);preparation –dehalogenation and dehydrohalogenation (Zaitsev rule), reduction of alkenes and Wittig reaction; Electrophilic addition to alkenes –addition of hydrogen halides (Markovnikov and anti-Markovnikov orientation), addition of halogens, epoxidation of alkenes, syn-dihydroxylation of alkenes. 	9	CO1- CO5	K1 – K5
V	5.1 Alkynes: IUPAC nomenclature; preparation – alkylation of acetylide ion, addition of acetylide ions to carbonyl groups, double dehydrohalogenation of alkyl dihalides; properties - hydrogenation of alkyne to alkane and cis/trans alkene, addition of hydrogen halides.	9	CO1- CO5	K1 – K5

	5.2 Aromatic hydrocarbons: structure of benzene –			
	Kekule and resonance representation, criteria for			
	aromaticity – Huckel's rule; Electrophilic aromatic			
	substitution reactions of benzene (halogenation,			
	sulphonation, nitration and alkylation); anisole and			
	nitrobenzene – reactivity and orientation (elementary			
	ideas), side chain reactions of benzene derivatives:			
	preparation and properties of nanhthalene			
	propulation and proportion of naphenatone.			
Textbool	ι XS	1	I	1
1. Princip	oles of Inorganic Chemistry, Puri B.R, Sharma L.R &Kalia	K.C., Milest	tone Publ	ishers and
Distribut	ors, New Delhi, 2008.	,		
2. Princip	oles of Physical chemistry, B.R. Puri, L.R. Sharma, M.S. Pa	athania, 47th	edition, V	/ishal Publishing
Co. 2016		,	,	0
3. Text B	ook of Physical Chemistry, P.L. Soni, O. P. Dharmarha, U	. N. Dash, Su	ultan Cha	nd & Sons, 2011.
4. Essent	ials of Physical Chemistry, Arun Bahl, B.S. Bahl, G.D. Tu	li. S. Chand 1	oublishers	s. 2009
5. Advan	ced Organic Chemistry, B.S. Bahl and ArunBahl, 2nd Edition	on. S. Chand	publicati	ions. 2010.
Reference	es	<u>, , , , , , , , , , , , , , , , , , , </u>	percent	2010
1. Concis	e Inorganic Chemistry, Lee, J.D., 5 th Edition, New Delhi, (Oxford Univ	ersitv Pre	ss. 2008
2 Physic	al Chemistry Peter Atkins Julio De Paula 9 th edition W	H Freeman	2009	
3 Organi	c Chemistry Leroy G Wade 8th Edition Pearson Educat	ion Inc. 201	9	
4 Organi	c Chemistry, 5 th edition John F. McMurry, 7 th Edition As	ian Books Pr	, ivate Lin	nited 2012
5 Organi	a Chamistry, Janica Corzunski Smith 2 nd Edition Tata M	Cross Lill E	ducation	Drivata Limitad
2000	e Chemistry, Janice Golzynski Siniti, 2 – Edition, Tata Mi		aucation	Filvate Linnieu,
2000	d Daadin aa			
		441 1 11	C 11'	
1. J. E. H	uneey, E. A. Kieter and R. L. Keiter, Inorganic Chemistry,	4th ed., Har	ber Collin	is, inew York,
1993		τF	10.	1 1000
	In the second			

2. D. F. Shriver and P. W. Atkins, Inorganic Chemistry, 3rd ed., W. H. Freeman and Co, London, 1999.

3. Jerry March, Advanced Organic Chemistry, 4th Edition, John Wiley And Sons, New York, 1992.

4. R.K. Prasad, Quantum chemistry, New age international(P) Ltd., 1997.

- 5. <u>http://www.chem.uiuc.edu/GenChemReferences/nomenclature_rules.html</u>
- 6.https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advance_d_Theoretical_Chemistry_(Simons)/01%3A_The_Basics_of_Quantum_Mechanics_

							B.Sc. C	ourse Arti	culation M	atrix							
Course Outco mes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO 6	PSO7	P S O 8	K L
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K 1
CO 2	-	3	-	-	-	-	-	-	-	-	3	-	-	-	-	-	K 2
CO 3	-	-	2	-	-	-	-	-	-	-	-	2	-	-	-	-	К 3
CO 4	-	3	-	-	-	-	-	-	-	3	-	-	-	-	-	-	K 4
CO 5	-	1	3	-	-	-	-	-	-	-	1	3	-	-	-	-	К 5
Wt. Avg.	-	2.5	2.5						3	3	2	2.5	-	-	-	-	
	Overall Mapping of the Course PO: 2.5 PSO: 2.62																

Cours	e Code										
Cre	dits	4									
Hours	/ Cycle	4									
Cate	gory	Part III	Core	Prac	tical						
Sem	ester	I									
Yea	r of	From the academic year 2023-24 onwards									
Implem	entation	-									
Cou	urse	To train the students for the laboratory practices									
Obje	ctives	To provide ha	nds-on experience for the concepts	s learned in the clas	ssroom.						
CO#		Cou	rse Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)						
On com	oleting the	e course succes	sfully, the student will be able	to							
CO1	Recall th	e fundamental	principles of volumetric analysis	PSO1, PSO3	K1						
CO2	Understa analysis	nd the funda	mental principles of volume	tric PSO1, PSO3	K2						
CO3	Apply the amount solution.	the PSO1, ple PSO7	К3								
CO4	Analyse method	the given samp	le solution based on the volume	tric PSO1, PSO7	K4						
CO5	Estimate given so through s	the amount of t solution accurat scientific report	the PSO1, ults PSO7 & PSO8	K5							

CONTENT

I Acidimetry Alkalimetry:

Estimation of sodium hydroxide and sodium carbonate in a mixture. Estimation of sodium carbonate and sodium bicarbonate in a mixture. Estimation of borax. Estimation of boric acid.

II Permanganimetry:

Estimation of a mixture containing ferrous and ferric irons. (reduction by Zn/H2SO4) Estimation of calcium. Estimation of nitrite ion. Estimation of H2O2. Estimation of manganese dioxide in pyrolusite.

III Dichrometry:

Estimation of ferrous and ferric irons in a mixture (internal indicator).

IV Iodometry and Iodimetry:

Estimations of copper, arsenious oxide, potassium permanganate potassium dichromate, tin and hypochlorite. Sodium thiosulphate versus iodine titration.

V Complexometric Titrations:

EDTA titrations Estimations of calium, magnesium and zinc.

VI Demonstration experiments :

Argentimetry Mohr and Volhard methods.

Textbooks

Vogel's Textbook of Quantitative Chemical Analysis, G H Jeffery, J Bassett, J Mendham and R C Denney, 5th Edition, John Wiley & Sons, New York, USA, 1989

References

https://youtu.be/Yb9CR7Ecs-Y?si=HaYVNODeKTlmdIlr

							B.	Sc. Cours	e Articulat	tion Matrix							
Course Outcomes				Program	Outcome	es			Program Specific Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	1
CO 1	-	2	2	-	-	2	-	-	2	-	2	-	-	-	-	-	K1
CO 2	-	2	2	-	-	2	-	-	2	-	2	-	-	-	-	-	K2
CO 3	-	2	-	-	2	2	-	-	2	-	-	-	-	-	3	-	K3
CO 4	-	2	-	-	2	2	-	-	2	-	-	-		-	3	-	K4
CO 5	-	2	-	-	2	2	2	-	2	-	-	-	-	-	3	2	K5
Wt. Avg.	-	2	2	-	2	2	2	-	2	-	2	-	-	-	3	2	
				-					•			Overall Ma	apping of t	he Course	PO: 2.0 PSO: 2.2	25	

PHILOSOPHY AND HISTORY OF SCIENCE

Cours	e Code											
Cre	edits	2										
Hours	/ Cycle	4										
Cate	egory	Part IV	General Course	Theory								
Sem	ester	II										
Yea	r of	From the ac	From the academic year 2023-24 onwards									
Implem	entation											
Cor Obje	urse ctives	 To ac To ac Scier To er and c 	 To acquire a comprehensive idea on the history of scientific thought To accurately summarise the debates encountering the Philosophers of Science today To encourage critical and analytical thinking to the claims, arguments and development of science 									
	1	• To in	troduce scientific and philosophi	cal methods to the	students							
CO#		Сон	rse Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)							
On com	pleting the	e course succe	ssfully, the student will be able	to								
CO1	List the history o	common tern f science	inologies used in philosophy	and PSO2, PSO3, PSO5	K1							
CO2Explain the (i) philosophy of scientific theories (ii) serendipity in scientific discoveries (iii) contribution of torch bearers to modern science in India.PSO2, PSO3, PSO5K2												
CO3Identify the (i) different periods of scientific history (ii) various scientific theories (iii) difference between modern science and aboriginal science (iv) serendipity involved in certain scientific discoveries (v) role of scientists in developing modern science in India.PSO2, PSO3, PSO5K3												
			SVLLABUS									

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY LEVEL
Ι	Introduction to Philosophy of Science: Terminologies and definitions: Philosophy, Philosophy of science, Worldview and science. Difference between science and technology- Origins of science and Overview of key periods in its history- Introduction to Greek Scientific Thought: Anaximander and Pythagoras, Aristotle& Plato's Science	12	CO1- CO3	K1 – K3

II	Philosophy of Scientific theories: Inductive and Deductive Reasoning; Theories of reductionism, replacement and progress of science; Examples; Cell theory, Theory of evolution, atomic theory, big bang theory – Theories as axioms or models, Hypothesis as reasonable speculation, Difference between hypothesis and Theory – role of Analogy and Metaphor in scientific thinking	12	CO1- CO3	K1 – K3
Π	Introduction to history of Science: <i>Modern Science:</i> Science in action during First World War – Contributions of Fritz Haber, Thomas Edison, Alfred Nobel - Science in action during Second World War – Radar science and its post-war influence on astronomy <i>Aboriginal science</i> : Indigenous weather knowledge, Aboriginal Astronomy: Science of constellations, Aboriginal star mapping and navigation, Indigenous land management, knowledge of medicinal plants	12	CO1- CO3	K1 – K3
IV	Serendipity in scientific discoveries: Penicillin, Nylon, Teflon, Vulcanization of rubber, Archimede's principle, Kekule's structure, dynamite, X-rays, Anti-malarial drug Quinine	12	CO1- CO3	K1 – K3
V	Torch bearers of Modern Science in India: Ashutosh Mukherjee and Calcutta mathematical society, Prafulla Chandra Ray (The father of Indian Chemistry), Premathanath Bose and industrialization, Sir C.V. Raman the first Indian Noble Laureate in Science, J.C. Bose,S.N. Bose, VikramSarabai and the genesis of space research, Homi J. Bhabha and the origin of Nuclear research, G.N. Ramachandran and emergence of biophysics research	12	CO1- CO3	K1 – K3
Textboo	ks			I
1. Timot	hy McGrew, Marc Alspector-Kelly, and Fritz Allhoff (ed	ds.), Philoso	phy of S	cience: An
2. Richa	rd DeWitt, Worldviews: An Introduction to the History a	nd Philosop	hy of Sc	ience, 2nd
Edition (Wiley - Blackwell, 2010)	1	<i>,</i>	,

References

1. Gorham, Geoffrey - Philosophy of Science: A Beginner's Guide. (Oxford: One World Books, 2009.)

							B.Sc. 0	Course Ar	ticulation N	latrix							
Course Outcomes		Program Outcomes								Program Specific Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO 7	PS O8	
CO 1	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K1
CO 2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K2
CO 3	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K3
Wt. Avg.	/t. Avg 3																
Overall Mapping of the Course F											PO- 3						

BASIC CHEMISTRY III

Course Code													
Cred	lits	4											
Hours /	Cycle	3											
Categ	gory	Part III	Core		Theor	ry							
Seme	ster	II											
Year	of	From the acade	emic year 2023-24 onwards										
Impleme	entatio												
n													
Cou	rse	• To acquire the conceptual knowledge on the dynamics of gaseous and solid state											
Object	tives	• To familiarize	the students with stereochemistry	y of or	rganic compour	nds							
CO#		Cou		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)								
On completing the course successfully, the student will be able to													
CO1	Recall	the fundamen	tals of (i) gaseous state	(ii)	PSO1,	K1							
	stereoc	hemistry (iii) soli	d state		PSO2,								
					PSO3								
CO2	Outline	e the (i) behaviour	of ideal and real gases (ii) conce	epts	PSO1,	K2							
	and pro	operties of stereoi	somers (iii) structure and proper	ties	PSO2,								
	of mate	erials in solid stat	e		PSO3								
CO3	(i) App	oly ideal gas equa	tion and van der Waals equation	n to	PSO1,	K3							
	gaseou	s systems (ii) I	dentify the effect of chirality	on	PSO2,								
	structu: govern	re and reactions ing structure of se	(iii) Identify laws and theored	ries	PSO3								
CO4	Analys	e the (i) behaviou	r of ideal and real gases (ii) relat	tion	PSO1,	K4							
	betwee	n structure and	properties of stereoisomers	and	PSO2,								
	materia	als in solid state			PSO3								
CO5	Evalua	te the (i) prope	rties of gases (ii) stereochem	ical	PSO1.	K5							
	feature	s of molecules a	nd their mechanistic pathways (PSO2,	-								
	propert	ties of solids base	d on structure	` '	PSO3,								
	· ·				PSO8								

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	 Gaseous state – I 1.1 Gas laws – postulates of kinetic theory – collisions – gas pressure. 1.2 Average kinetic energy of translational – Absolute scale of temperature. 1.3 Maxwell distribution law of molecular speeds (no derivation) molecular speeds and energy distribution as a function of temperature – most probable – average – root mean square speeds of molecules (numerical problems). 1.4 Degrees of freedom of motion – principle of equipartition energy – molecular basis of heat capacity – mean free path – viscosity of gases. 	9	CO1- CO5	K1 – K5
Π	Gaseous state – II 2.1 Real gases – compressibility factor – deviation from ideality – van der Waals' equation 2.2 Boyle temperature – critical phenomena – critical constants – law of corresponding states and reduced equation of state – intermolecular forces and liquefaction of gases.	9	CO1- CO5	K1 – K5
III	Stereochemistry I Chirality and Enantiomerism in organic molecules, (R) and (S) nomenclature of asymmetric carbon atoms, optical activity, specific rotation, racemic mixtures, optical purity, enantiomeric excess (simple problems); resolution of racemic mixtures– chemical and chromatographic methods, Diastereoisomerism, Meso compounds.	9	CO1- CO5	K1 – K5
IV	 Stereochemistry II 4.1 Geometrical isomerism in double bonded and cyclic compounds, (E) and (Z) nomenclature. 4.2 Conformational analysis of ethane, n-butane, cyclohexane and mono/di-substituted cyclohexane. 4.3 SN1, SN2, E1 and E2 reactions: Mechanistic and stereo-chemical features. 	9	CO1- CO5	K1 – K5
V	Solid state 5.1 Crystal systems, crystal lattice, unit cell, crystallographic axes; Law of crystallography; Miller indices; Packing of ions in crystals, packing efficiency and density from cubic lattice dimension; radius ratio and its limitations; Diffraction of X-rays by crystals – Bragg's Law; Structure of NaCl, CsCl, diamond and graphite.	9	CO1- CO5	K1 – K5

5.2 Qualitative ideas of free electron and band theories;									
defects in solid state (stoichiometric defects only); p-									
type and n-type semiconductors.									
Textbooks									
1. Principles of Inorganic Chemistry, Puri B.R, Sharma L.R &Kalia K.C., Milestone Publishers and									
ors, New Delhi, 2008									
les of Physical chemistry, B.R. Puri, L.R. Sharma, M.S. P	athania, 47th	edition, V	/ishal Publishing						
Co, 2016									
ook of Physical Chemistry, P.L. Soni, O. P. Dharmarha, U	. N. Dash, Sı	ıltan Cha	nd & Sons, 2011						
als of Physical Chemistry, Arun Bahl, B.S. Bahl, G.D. Tul	i, S. Chand p	ublishers	, 2009						
ced Organic Chemistry, B.S. Bahl and ArunBahl, 2nd Editi	on, S. Chand	publicati	ions, 2010						
es		•							
e Inorganic Chemistry, Lee, J.D., 5th Edition, New Delhi,	Oxford Unive	ersity Pre	ss, 2008						
al Chemistry, Peter Atkins, Julio De Paula, 9th edition, W.	H. Freeman,	2009							
3. Organic Chemistry, Leroy G. Wade, 8th Edition, Pearson Education Inc., 2019									
4. Organic Chemistry, 5th edition, John E. McMurry, 7th Edition, Asian Books Private Limited, 2012									
c Chemistry, Janice Gorzynski Smith, 2nd Edition, Tata M	Graw Hill E	ducation	Private Limited,						
	 5.2 Qualitative ideas of free electron and band theories; defects in solid state (stoichiometric defects only); p-type and n-type semiconductors. as a les of Inorganic Chemistry, Puri B.R, Sharma L.R & Kalia brs, New Delhi, 2008 bles of Physical chemistry, B.R. Puri, L.R. Sharma, M.S. Patook of Physical Chemistry, P.L. Soni, O. P. Dharmarha, U tals of Physical Chemistry, Arun Bahl, B.S. Bahl, G.D. Tul ced Organic Chemistry, B.S. Bahl and ArunBahl, 2nd Editives e Inorganic Chemistry, Lee, J.D., 5th Edition, New Delhi, Cal Chemistry, Peter Atkins, Julio De Paula, 9th edition, W. c Chemistry, 5th edition, John E. McMurry, 7th Edition, As c Chemistry, Janice Gorzynski Smith, 2nd Edition, Tata Modeling and the semiconduction in the semiconduction of the semistry. 	 5.2 Qualitative ideas of free electron and band theories; defects in solid state (stoichiometric defects only); p-type and n-type semiconductors. as bles of Inorganic Chemistry, Puri B.R, Sharma L.R &Kalia K.C., Milest ors, New Delhi, 2008 bles of Physical chemistry, B.R. Puri, L.R. Sharma, M.S. Pathania, 47th ook of Physical Chemistry, P.L. Soni, O. P. Dharmarha, U. N. Dash, Su als of Physical Chemistry, Arun Bahl, B.S. Bahl, G.D. Tuli, S. Chand p ced Organic Chemistry, B.S. Bahl and ArunBahl, 2nd Edition, S. Chand p e Inorganic Chemistry, Lee, J.D., 5th Edition, New Delhi, Oxford Universal Chemistry, Peter Atkins, Julio De Paula, 9th edition, W. H. Freeman, c Chemistry, Leroy G. Wade, 8th Edition, Pearson Education Inc., 2019 c Chemistry, 5th edition, John E. McMurry, 7th Edition, Asian Books Pr c Chemistry, Janice Gorzynski Smith, 2nd Edition, Tata McGraw Hill E 	 5.2 Qualitative ideas of free electron and band theories; defects in solid state (stoichiometric defects only); p- type and n-type semiconductors. as bles of Inorganic Chemistry, Puri B.R, Sharma L.R &Kalia K.C., Milestone Publ ors, New Delhi, 2008 bles of Physical chemistry, B.R. Puri, L.R. Sharma, M.S. Pathania, 47th edition, V ook of Physical Chemistry, P.L. Soni, O. P. Dharmarha, U. N. Dash, Sultan Cha als of Physical Chemistry, P.L. Soni, O. P. Dharmarha, U. N. Dash, Sultan Cha als of Physical Chemistry, B.S. Bahl and ArunBahl, 2nd Edition, S. Chand publishers ced Organic Chemistry, B.S. Bahl and ArunBahl, 2nd Edition, S. Chand publicattes e Inorganic Chemistry, Lee, J.D., 5th Edition, New Delhi, Oxford University Pre al Chemistry, Peter Atkins, Julio De Paula, 9th edition, W. H. Freeman, 2009 c Chemistry, 5th edition, John E. McMurry, 7th Edition, Asian Books Private Lin c Chemistry, Janice Gorzynski Smith, 2nd Edition, Tata McGraw Hill Education 						

2008.

							B.S	Sc. Cours	se Articula	ation Matr	ix						
Course Outcomes			Pro	ogram O	utcomes				Program Specific Outcomes								Cognitive Level
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	3	3	1	-	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	3	3	1	-	-	-	-	-	K3
CO 4	-	3	-	-	1	-	-	-	3	3	2	-	-	-	-	-	K4
CO 5	-	3	-	-	1	-	2	-	3	3	2	-	-	-	-	1	K5
Wt. Avg.	-	3	-	-	1	-	2	-	3	3	1.5	-	-	-	-	1	
Overall Mapping of the Course PO -2.0 PSO - 2.1																	

CHEMISTRY OF NON METALS

Cours	e Code								
Cre	dits	4							
Hours	/ Cycle	3							
Cate	gory	Part III	Core		Theor	ry			
Sem	ester	II							
Yea	r of	From the aca	demic year 2023-24 onwards						
Implem	entation								
Cou Obje	ırse ctives	To understan their preparat elements of n understand th	d and appreciate the chemistry of on, properties, classification, ap eighbouring groups in the period eir properties	of main grou oplications, dic table and	ip elemen relationsl 1 the con-	nts including nip with cepts to			
CO#		Cou	rse Outcome(s)	P Add	SO ressed	Bloom's Taxonomy Levels (K1 to K5)			
On completing the course successfully, the student will be able to									
CO1	Recall (elements compour	i) the fundan and (ii) struc ids	coup PS	501, 502	K1				
CO2	Understa elements compour	nd (i) the fund and (ii) struc	lamental properties of main gr ture and reactions of main gr	coup PS coup PS	SO1, SO3	K2			
CO3	Apply the compour	e fundamental c ids to understar	concepts of main group elements ad their reactivity	and PS PS	503, 504	K3			
CO4	(i) Comp group ele (ii) Analy of main g (iii) Cate group ele compour	(i) Compare (i) the trends in the properties among main group elementsPSO3, PSO4K.(ii) Analyze the anomalous behaviour of first row elements of main group block (iii) Categorize the structural features and properties of main group elements (oxides, halides, oxyacids and interhalogenPSO4							
CO5Justify (i) the behaviour of the main group elements and (ii)PSO2,geometry and behaviour of the main group compoundsPSO4based on the fundamental conceptsPSO4						K5			
			SYLLABUS						
UNIT		C	ONTENT	HOURS COs		BLOOM'S TAXONOMY LEVEL			
Ι	1.1 Con	nparative study	of the following properties of	9	CO1-	K1 – K5			

	 1.2 Comparative study of the oxides, halides and hydrides of Group 13, 14 and 15 on structure, stability, nature and reactivity (action of heat, action of water, redox property). 1.3 Hydrides, carbides and nitrides – classification, examples and general characteristics. 			
Π	 2.1 Group 13 (Boron family): Reaction of boron with oxygen, water, acids and alkali. Preparation, properties, bonding and structure of borazole, borax, boric acid, diborane, boron trioxide and boron nitride. 2.2 Boranes and carboranes – types only. 2.3 Group 14 (Carbon family): Preparation, properties and uses of carbon suboxide and carbon disulphide; Catenation and Heterocatenation. 2.4 Silicon: Preparation, properties, structure and uses of silicon dioxide silicones silicon carbide: 	9	CO1- CO5	K1 – K5
	Silicates (classification and structure only); Hydrolysis of SiCl4.			
III	 3.1 Group 15 (Nitrogen family): Properties, structure and uses of: a. Hydrides – hydrazine, hydroxyl amine, hydrazoic acid and phosphine. b. Halides – tri and penta chlorides of phosphorus. c. Oxides – dinitrogentetraoxide, dinitrogenpentoxide, tri and penta oxides of phosphorus 3.2 Oxoacids of nitrogen and phosphorus- Oxidation state and structure; Preparation and properties of nitrous acid, nitric acid, phosphorous acid and phosphoric acid. 3.3 Liquid ammonia as solvent; Fixation of atmospheric nitrogen. 4.1 Group 16 (Openen family): projective acid trip action and properties of phosphorus. 	9	CO1- CO5	K1 – K5
IV	 4.1 Group 16 (Oxygen family): oxidation state and structure of oxides and oxoacids of sulphur; Preparation and properties of sulphurous acid, sulphuric acid, Caro's and Marshall's acids. Sodium thio sulphate as reducing agent in volumetric analysis. 4.2 Heavy water – preparation, properties and uses. 4.3 Group 17 (Halogen family): A comparative study on oxides and oxyacids of halogens with respect to oxidation state, oxidizing power, acidic nature and structure. 	9	CO1- CO5	K1 – K5
V	 5.1 Pseudo halogens: cyanide, thiocyanate, and azide structure and properties. 5.2 Inter-halogen compounds: AB, AB3, AB5 and AB7 – structure based on VSEPR theory. 	9	CO1- CO5	K1 – K5

5.3 Inert gas compounds: Preparation, properties and structure of compounds of Xenon – XeF2, XeF6, XeO3, XeOF4. Clathrate compounds and their applications.									
Self-study									
Halides of thallium, Applications of BF3 compounds, Ethyl b	orate test.								
• Stannous chloride as reducing agent.									
• Sodium arsenite in volumetric analysis; Sodium thiosulphate	in photograp	hy.							
• Distinction between sulphides, sulphites, sulphates and thiosu	ılphates.								
Basic nature of iodine.									
• Position of noble gas in periodic table, occurrences and uses	of noble gase	s.							
Textbooks									
1. Principles of Inorganic Chemistry, Puri B.R, Sharma L.R &Ka	alia K.C., Mi	lestone F	Publishers and						
Distributors, New Delhi, 2008.									
2. Concise Inorganic Chemistry, Lee, J.D., 5th Edition, New Del	hi, Oxford U	niversity	/ Press, 2008.						
References									
1. Modern Inorganic Chemistry, Madan R.D., Satyaprakash"s , Sultan Chand & Company, New									
Delhi, 2004.									

2. Inorganic Chemistry, Shriver and Atkins, San Francisco. W.H. Freeman & Company, 2006.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS	PSO8	Κ
Outcom															07		L
es																	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	Κ
																	1
CO 2	-	3	-	-	-	-	-	-	2	-	3	-	-	-	-	-	Κ
																	2
CO 3	-	3	3	-	-	-	-	-	-	-	3	3	-	-	-	-	Κ
																	3
CO 4	-	3	3	-	-	-	-	-	-	-	3	3	-	-	-	-	Κ
																	4
CO 5	-	3	2	-	-	-	-	-	-	1	-	3	-	-	-	-	Κ
		-										-					5
Wt.	-	3	2.75	-	-	-	-	-	2.5	2	3	3	-	-	-	-	
Avg.											_	-					
											Over	all Mapp	ing of the	e Course	PO: 2	2.88	
												11	C		PSO	2.63	

B.Sc. Course Articulation Matrix

ORGANO OXYGEN CHEMISTRY

Course	Code										
Cred	lits	4									
Hours /	Cycle	3									
Categ	gory	Part	NA	Core		Theo	ry				
Seme	ster	III	I								
Year Impleme n	: of entatio	From	the acad	emic year 2023-24 onwards							
Cou Objec	rse tives	 To org To To control 	To understand the fundamental concepts connected with oxygen containing organic compounds and their reactions To study the various reaction mechanisms of name reactions To identify electrophilic and nucleophilic centres in oxygen containing org compounds and propose a reasonable mechanism								
CO#			Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comp	pleting t	he cour	se succes	sfully, the student will be able	e to						
CO1	Recall of orga	the fund no oxyg	damental gen comp	concepts, definitions and reaction	ions	PSO1, PSO2	K1				
CO2	Unders chemis compo	stand (i try (ii) unds) the co the IUPA	ore concepts of organo oxy AC nomenclature of organo oxy	/gen /gen	PSO1, PSO2	K2				
CO3	Apply based of reaction composition	(i) funda organic ns and unds	amental compoun their	oncepts in the preparation of oxy ds (ii) fundamental concepts in mechanisms of organo oxy	/gen the /gen	PSO2, PSO3, PSO4	K3				
CO4	Analys contain	rse the behaviour and reactivity of organic compounds PSO2, K4 ining oxygen based on the fundamental concepts PSO4									
CO5	Compa involvi	re and end of and of a second se	evaluate t no oxyge	he behaviour of chemical proces n compounds	sses	PSO2, PSO3, PSO4	K5				

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
				LEVEL
Ι	1.1 Alcohols: IUPAC Nomenclature; preparation from	9	CO1-	K1 – K5
	alkene (acid-catalyzed hydration,		CO5	
	oxymercuration-demercuration, Hydroboration-			
	oxidation), via hydrolysis of alkyl halides,			
	reduction of carbonyl compounds by hydride reducing			
	agent, by catalytic hydrogenation of			
	aldehydes and ketones and using Grignard reagent.			
	1.2 Preparation of specific alcohols: allyl alcohol,			

	benzyl alcohol, ethylene glycol and			
	glycerol			
	1.3 Chemical properties of alcohols: reaction with			
	alkali metal acid chloride phosphorous			
	halides thionyl chloride: dehydration (Zaitsey's			
	rule) Victor Moyer and Luces test for			
	distinguishing 1° 2° and 2° also hals reportion of			
	distinguishing 1, 2 and 3 alconois, reaction of			
	ethylene glycol (with aldenydes and ketones,			
	with Pb(OCOCH3)4 and HIO4), reaction of glycerol			
	with HIO4 and KHSO4.			
II	2.1 Aldehydes and kekones: IUPAC nomenclature;	9	CO1-	K1 – K5
	preparation - oxidation of alcohols,			
	hydration of alkynes, Friedel-Crafts acylation,		CO5	
	Gatterman-Koch reaction, from acid chlorides,			
	from carboxylic acids and nitriles (for ketones)			
	2.2 Preparation of specific carbonyl compounds:			
	salicylaldehye via Reimer-Tiemann			
	reaction, synthesis of acrolein, p-quinone from quinol.			
	2.3 Chemical properties of aldehvdes and ketones:			
	Structural features of carbonyl group and			
	its nature of reactivity: Nucleophilic addition –			
	hydration formation of evanohydrin imine and			
	acetal reaction with hydroxylamine hydrazine			
	phenyl hydrazine and semicarbazide aldol and			
	Michael reaction Benzoin condensation- oxidation of			
	aldehydes reduction - Clemmensen and			
	Wolff Kishner reduction Cannizzaro Claisen			
	Schmidt and Knowenegal condensation Parkin			
	and Deformation			
TTT	and Ketofinatsky feaction.	0	CO1	V1 V5
111	5.1 Calboxylic acids. IOFAC nonnenciature,	9	01-	$\mathbf{K}\mathbf{I} = \mathbf{K}\mathbf{J}$
	Vector of the section of the section is using		COF	
	K2Cr2O/ and KWIIO4, Halolofin feaction.		COS	
	3.2 Preparation of specific carboxyfic actus: Benzoic			
	acid (from benzyl alconol, pnenyl nitrile,			
	phenylmagnesium bromide), Phthalic acid (from			
	naphthalene, o-xylene).			
	3.3 Derivatives of Carboxylic acids: IUPAC			
	nomenclature, ester – synthesis (Fischer			
	Esterification and Tischenko reaction) and reactions -			
	with LiAlH ₄ , Grignard reagent, Bouveault-Blanck			
	reduction, transesterification); acid chloride –			
	synthesis (from carboxylic acid) reactions			
	(R2CuLi and Li[t-BuO]3AlH, Rosenmund's			
	reduction); amide – synthesis (pyrolysis of			
	ammonium salts of carboxylic acids, Schotten-			
	Baumann reaction) and reactions (hydrolysis and			
	dehydration); acid anhydride – synthesis (dehydration			
	of carboxylic acids) and reactions			
	(hydrolysis, alcoholysis, Friedel-Crafts acylation)	-		
IV	4.1 Preparation and properties of phenols: synthesis	9	CO1-	K1 – K5
	from cumene, aniline and chlorobenzene		CO5	

		T		
	(Dow's process); reactions of phenols – oxidation –			
	Electrophilic aromatic substitution –			
	coupling, Kolbe's, Gattermann, Reimer-Tiemann			
	reaction; Preparation and reactions of o-cresols			
	and α-naphthols.			
	4.2 Ethers: IUPAC nomenclature; preparation and			
	properties of ethers: synthesis - dehydration of			
	alcohols and Williamson synthesis; Cleavage of ether			
	by HI and BBr3.			
	4.3 Preparation and chemical properties of epoxides:			
	synthesis – peroxyepoxidation, base			
	promoted cyclization of halohydrins; chemical			
	properties – reaction with H ₊ /H ₂ O and RMgX.			
V	5.1 Rearrangement reactions-Claisen, Fries and	9	CO1-	K1 – K5
	Pinacol-Pinacolone, Bayer-viliger oxidation.			
	5.2 Ester hydrolysis – BAC2 and AAC2 mechanisms.		CO5	
	5.3 Acidity of phenols and Carboxylic acids – simple			
	problems based on electronic effects.			
	5.4 Preparation of acetoacetic ester and malonic ester,			
	Synthetic uses of acetoacetic and			
	malonic ester.			
Textbool			D	r • •, •
1. Organ	ic chemistry, 5th edition, John E. McMurry, 7th Edition, A	Asian Books	Private	Limited,
2012.			1 1 1 1	
2. Advan	ced organic chemistry, B.S. Bahl and ArunBahl, 2nd Edi	tion, S. Cha	nd public	cations,
2010.				
Referenc	188 is share istan Isaise Communiti Sasith 2 sEdition Tetal		11 TC J	
1. Organ	in the diagonal sector and the contract of the	MCGraw HI	II Educat	ION
Private L	Amilea, 2008.	tion Inc. 20	10	
2. Organ	d Dooding	$\frac{1000}{100} \frac{1000}{100}, 200$	//9	
1 V K A	u Keaunig hluwalia and Dakash Kumar Darashar, Organia Daagiar	Machanian	n / Edit	ion
$\begin{bmatrix} \mathbf{I} & \mathbf{V} & \mathbf{K} & \mathbf{A} \\ \mathbf{A} \end{bmatrix}$	muwana anu Kakosh Kumai Palashai, Organic Keacuor arosa Publishing House India 2010		11, 4th EUI I	1011,
	Dina Organic Chemistry 5 Edition Tata McGraw Hill	Special Indi	an Editio	'n
India 20	110, Organic Chemistry, 5th Edition, Tata McOlaw IIII, 1	Special mul		····,
Online R	esources (accessed on 20 May 2024)			
1. https://	www.organic-chemistry.org/namedreactions/			
	······································			

	B.Sc. Course Articulation Matrix															
Course			Prog	gram Ou	tcomes			Program Specific Outcomes								Cognitive
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	Level
CO 1	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	3	2	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO 3	2	3	1	-	-	-	-	-	3	2	3	-	-	-	-	K3
CO 4	2	3	1	-	-	-	-	-	3	-	2	-	-	-	-	K4
CO 5	2	3	2	-	-	-	-	-	3	2	2	-	-	-	-	K5
Wt. Avg.	2.4	2.6	1.3	-	-	-	-	3	3	2	2.3					
										Ove	erall Mapp	ing of the	Course	PO: 2.1		
												-		PSO: 2.5	58	

APPLIED CHEMISTRY

Cours	e Code													
Cre	dits	3												
Hours	/ Cycle	3												
Cate	gory	Part III	Elective		Theo	ry								
Sem	ester	III												
Yea Implem	r of entation	From 2023-2	From 2023-24 onwards											
		To explore industrial, technological and commercial dimensions of chemistry												
Cor Obje	ırse ctives	To understand and appreciate different types of fuel, traditional and modern building materials, , various water treatment methods, polymers, their types and methods of preparation, and the manufacturing processes of common products like soap, perfume, paper and paints.												
CO#		Cou	rse Outcome(s)	A	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)								
On comj	oleting the	e course succes	sfully, the student will be able	e to										
CO1	Recall th fuel (ii) (iv) poly such as pigments	te terminologie building mater mers and (v) in soaps, pulp d	s and fundamental principles of ials, (iii) water treatment meth- ndustrial processes for the prod & paper, perfumes and paints	of (i) lods, lucts s &	PSO1, PSO2	K1								
CO2	Understa (i) fuel (i (iv) poly such as pigments	nd the terminol i) building mate mers and (v) in soaps, pulp d	es of lods, lucts s &	PSO1, K2 PSO3										
CO3	Apply the building polymers as soaps,	e fundamental materials, (ii s and (v) indust pulp & paper,	chemical principles to (i) fuel i) water treatment methods, rial processes for the products s perfumes and paints & pigments	l (ii) (iv) such s.	PSO3, PSO4	К3								
CO4	Analyze, chemical water tre	compare an principles of eatment method	d comprehend the fundame (i) fuel (ii) building materials, ls, (iv) polymers and (v) indust	ental (iii) strial	PSO3, PSO4	K4								

	processes for the products such as soaps, pulp & paper, perfumes and paints & pigments.		
CO5	Justify the applied chemistry facts, principles and processes based on the fundamental chemical principles	PSO3, PSO4	K5

	SYLLABUS			
UNIT	CONTENT	HOUR S	Cos	BLOOM'S TAXONOMY LEVEL
Ι	 <u>Unit I: Fuels</u> 1.1 Energy: Non-Renewable, Classification of fuels, Solid, Liquid and Gaseous. 1.2 Solid fuels: Coal – classification by rank, proximate and ultimate analysis, low and hightemperature carbonisation; Otto-Hoffmann's byproduct Method. 1.3 Liquid fuels: Refining of crude petroleum and uses of fractions; Cracking – thermal andcatalytic (fixed bed and fluidized bed catalysis); Octane number and Cetane number 1.4 Gaseous fuels: Natural gas and gobar gas: production, composition and uses. 	9	CO1- CO5	K1 – K5
Π	 Unit II: Building Materials 2,1 Portland Cement: Composition, manufacture, setting and hardening of cement; Modern cement industry – Rapid Hardening Cement; White Cement; Air Entraining Cement and Hydro- graphic cement. 2.2 Glass: Manufacture; types – soda lime glass, flint glass, borosilicate glass, alumino silicate glass, vitreosil, photochromic glass and safety glass, Bioactive glass ceramics-properties and applications in healthcare 2.3 Future construction materials: 3D graphene, modular bamboo, transparent aluminium, spider silk, aluminum foam, wool brick, nanocrystal, hydroceramics and biochar. 	9	CO1- CO5	K1 – K5
III	3.1 Sources of water; temporary hardness and permanent hardness – Units of hardness – Disadvantage of hard water in domestic, industry and steam generation in boilers; effect of iron and manganese in water; estimation of	9	CO1- CO5	K1 – K5

	hardness – EDTA method, estimation			
	of total hardness.			
	3.2 Water softening methods:			
	Industrial purpose – Lime-soda			
	process, zeolite process, Ion exchange			
	– Demineralisation – Deionization			
	process – Mixed bed deionization –			
	Domestic purpose – Removal of			
	suspended impurities – Removal of			
	microorganism – Chlorination –			
	Breakpoint chlorination – reverse			
	osmosis – Desalination, Solar powered			
	desalination units			
IV	4.1 Polymers: Classification; types of	9	CO1-	K1 – K5
	polymerization. Mw and PDI.	-	CO1-	_
	4.2 Natural polymers: polysaccharides (starch and		COS	
	cellulose); polyhydrocarbons (natural			
	rubber) and proteins			
	4.3 Synthetic polymers: Polyhydrocarbons			
	(nolythene_synthetic rubber)			
	polychlorohydrocarbons(PVC, neoprene)			
	polyamides (nylon) and polyphenols			
	(phenolformaldehyde resin) synthesis			
	(phenomornal denyde resin) – synthesis			
	4.4 Addition and condensation polymorization stop			
	4.4 Addition and condensation polymerization, step			
	Germanian and monomias of			
	the analysis and the magnetic state			
	thermoprastics and thermosetting			
	4.5 Plastice, ackthene, ackuranene (instactio			
	4.5 Plastics: polythene, polypropene (isolactic			
	Structure), Ziegier-Natta polymerization,			
	PVC, PVA, Polystyrene and Bakelite –			
	synthesis and uses, Bioplastics from			
	microorganisms			
	4.6 Fibres: rayon, terylene and nylon – synthesis and			
	uses.			
V	Unit V: Industrial Products and Process	9	CO1-	K1 – K5
		-		
	5.1 Soap and its manufacture - batch and		CO5	
	continuous process: types – laundry, toilet.		0.00	
	transparent soap floating soap - soap			
	powders.			
	5.2 Pulp and paper: manufacture of pulp -			
	sulphate soda and sulphite nulp - beating			
	refining filling sizing and colouring _			
	manufacture of naper			
	5.3 Basic chemicals of perfumes: vehicles –			
	animal resinguis essential oil and synthetic			
	fivatives fragrances - synthetic and semi			
1	Induves magrances - synurcue and senin	1	1	

Self-stud	synthetic chemicals - cosmetic formulations, environmental impacts of perfumes 5.4 Pigments, paints; constituents of 5.4 Pigments, paints; constituents of paints; 5.4 Pigments, paints; constituents of paints; 5.4 Pigments, paints; varnishes - spirit and oleoresinous - lacquers, Superhydrophobicity and self cleaning paints y y y y y y											
	 Comparison between solid, liquid and gaseous fuels. Bioceramics – types; Abrasives – classification Recent trends in waste water treatment: Super critical water oxidation Synthetic rubber: neoprene and Buna-S, vulcanization of rubber. Self cleaning paints and nanochemistry Cleansing action of detergents Recycling of paper 											
Textbook	 Textbooks Biswas, A.K., Frontiers in Applied Chemistry, Narosa publishing house, 1989 Textbook of Applied Chemistry, Thangamma Jacob, Macmillian India Ltd. Mumbai, 1990 Fundamental Concepts of Applied Chemistry, Jayashree Ghosh S.Chand & Company Ltd., New Delhi, 2008. Perfumes, Cosmetics and Soaps, W.A.Poucher (Vol.3), 9th Edition, Springer ScienceBusiness Media, 1993. 											
Referenc	 Vermain, O.P and Narula A.C., Applied chemistry: Theory and practice, 1995. Chemical Process Industries, R. Norris Shreve and Joseph A.Brink,Jr.,4th Edition, McGrawHill, 1977 											

B.Sc. Course Articulation Matrix

C	DO1	DOO	DO2	D	DOC	DOC	DO	DOO	DCO1	DCOO	DCO2	DCO4	DCO	DCO	DCO	DCO	TZ.	
Course	POI	PO2	PO3	Р	POS	PO6	PO	PO8	PSOI	PSO2	PS03	PS04	PSO	PSO	PSO	PSO	К	
Outcomes				O4			7						5	6	7	8	levels	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1	
CO 2	-	3	-	-	-	-	-	-	2	-	3	-	-	-	-	-	K2	
CO 3	-	3	3	-	-	-	-	-	-	-	3	3	-	-	-	-	K3	
CO 4	-	3	3	-	-	-	-	-	-	-	3	3	-	-	-	-	K4	
CO 5	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	K5	
Wt. Avg.	-	3	2.67	-	-	-	-	-	2.5	3	3	3	-	-	-	-		
											Ov	erall Map	ping of	the Cou	rse P	PO: 2.84		
												Ρ	PSO: 2.88					

PRACTICAL II – INORGANIC QUALITATIVE ANALYSIS

Cours	e Code												
Cre	dits	4											
Hours	/ Cycle	4											
Cate	gory	Part III	Core		Practi	cal							
Sem	ester	III and IV											
Yea	r of	From the aca	demic year 2023-24 onwards										
Implem	entation												
Cou	irse	To apply physical and inorganic chemistry concepts in the identifying the anions											
Obje	ctives	and cations through qualitative analysis											
CO#		Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)							
On completing the course successfully, the student will be able to													
CO1	Recall (i) inorganic solubility technique procedur) the underlying c compounds v product and (i es like filtrat e for semi-mici	is of and ysis the	PSO1, PSO2	K1								
CO2	Compreh qualitativ preparati	end the princip e analysis & on of complexe	ples and concepts behind semimichemical reactions involved in es.	icro the	PSO1, PSO2	K2							
CO3	(i) Appl semimicr the catio qualitativ separatio	y the underly to qualitative ar ns and (ii) De ve analysis like n, flame test et	of and icro roup	PSO3, PSO4, PSO5 PSO7	К3								
CO4	Analyse mixture	the anions and	cations in the given inorganic	salt	PSO3, PSO7	K4							
CO5	Evaluate confirma	the accuracy tory tests	of the identified ions based on	the	PSO7	K5							

Inorganic Qualitative Analysis

• Reactions of the following ions:

Cations: mercury, lead, copper, bismuth, cadmium. antimony, tin, ferrous and ferric iron, aluminium, zinc, manganese, cobalt, nickel, calcium, strontium, barium, magnesium, and ammonium

Anions: sulphide, carbonate, nitrate, sulphate, chloride, bromide, iodide, fluoride, oxalate, arsenite, phosphate, chromate and borate radicals.

• Semimicro analysis of a mixture containing two cations and two anions of which one is an interfering ion.

Textbooks

1. Semimicro qualitative analysis of inorganic ions by V. V. Ramanujam

2. Vogel's textbook of Macro and Semimicro qualitative analysis, 5th Edition, Revised by G. Svehla, Longman GroupLimited, London, 1979

References

1. Experimental Inorganic Chemistry, W.G. Palmer, Cambridge University Press, Cambridge, 1965

Online Resources

https://pubs.rsc.org/en/content/articlelanding/1953/an/an9537800356

Course				Program Ou	itcomes						Program	Specific Outo	comes				K
Outcom																	L
es	PO1	PO2	PO3	PO4	PO5	PO6	PO7	Р	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	Р	PS	
								0							S	08	
								8							0		
															7		
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K
																	1
CO 2	-	3	-	-	-	-	-	-	3	3	-	-	-	3	-	-	K
																	2
CO 3	-	3	2	-	2	-	-	-	-	-	3	3	2	-	3	-	K
																	3
CO 4	-	-	-	2	2	-	-	-	-	-	-	-	-	3	3	-	K
																	4
CO 5	-	-	-	-	2	-	-	-	-	-	-	-	-	-	3	-	K
																	5
Wt.	-	3	2	2	2	-	-	-	3	3	3	3	2	3	3	-	
Avg.																	
												Overall N	Mapping of th	e Course	PO:	2.25	
															PSC):	
															2.85	5	

B.Sc. Course Articulation Matrix
BIOLOGICAL CHEMISTRY

Course	e Code							
Cre	dits	4						
Hours	/ Cycle	3						
Cate	gory	Part III		Inter-disciplinary		Theor	ry	
Sem	ester	III						
Yea Implem	r of entation	From the	e aca	demic year 2023-24 onwards				
Cou Obje	ırse ctives	• 7 c • 7	To en hemi To ap	able the students to understand th ical processes in living systems preciate the chemistry aspect of l	ne conce biologic	epts in physical molecule	ical and s	
CO#	CO# Course Outcome(s) PSO Addressed							
On comp	oleting the	e course su	icces	sfully, the student will be able t	to	I		
C01	Recall (i carbohyd acids, en of biolog) the define rates, amine zymes and ically imposed	nition no ac vitan ortan	n, classification, biological role bids, proteins, lipids, sterols, nucl mins (ii) the structure and reactiv t compounds	of eic vity	PSO1 PSO2	K1	
CO2	Understa and biolo proteins,	nd (i) the f ogical fun lipids, ster	funda ctior ols, 1	amental structural aspects, reactions of carbohydrates, amino aci nucleic acids, enzymes and vitam	ons ds, ins	PSO2 PSO3	K2	
CO3	Apply the theoretical concepts to comprehend the functions of biologically important compounds and to rationalize their reactivityPSO2 PSO3 PSO4K3						K3	
CO4	Compare and contrast properties/types of carbohydrates, amino acids and proteins, lipids, sterols, nucleic acids, enzymes and vitamins at a basic level.							
CO5	Synthesis course to fundamen	se the kno b have a ntals of cho	owlee con emis	dge gained through study of t aprehensive understanding of t try	his the	PSO5	K5	

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
				LEVEL
Ι	Chemistry of Carbohydrates:	12	CO1-	K1 – K5
	1.1 Definition, classification and biological role of		CO5	
	carbohydrates.			
	1.2 Monosaccharides: Linear and ring structures			
	(Haworth formula) of ribose, glucose, fructose and			
	mannose (structural determination not required);			
	physical and chemical properties (reduction,			
	hydrolysis and oxidation) of glucose and fructose.			

	 1.3 Disaccharides: Ring structures (Haworth formula), occurrence, physical and chemical properties of lactose and sucrose. 1.4 Polysaccharides: Starch, glycogen and cellulose – structure and properties. 			
II	 Chemistry of amino acids and proteins 2.1 Amino acids: classifications, physical properties (amphoteric nature and isoelectric point); reactions of Glycine. 2.2 Proteins: classification, properties-denaturation and renaturation of protein molecules. 2.3 Separation and purification of proteins: dialysis – electrophoresis. 2.4 Primary structure- End group analysis (N- terminal analysis – Edman's method, Enzymatic method; C-terminal analysis – hydrazinolysis and bio-chemical methods) 2.5 Catabolism of amino acids: Transamination, oxidative deamination, decarboxylation. 	12	CO1- CO5	K1 – K5
Π	Chemistry of Lipids 3.1 Definition, classification- simple lipids (fatty acids), compound lipids and derived lipids; properties – saponification, rancidity, oxidation, hydrogenation, halogenation reactions – Iodine number, Saponification number, Acetyl number. 3.2 Sterols: Cholesterol (elucidation of structure not needed), biological importance and chemical properties; Bile acids – functions. 3.3 Biological functions of lipids.	12	CO1- CO5	K1 – K5
IV	 Chemistry of Nucleic acids 4.1 Purine and pyrimidine bases, nucleosides, nucleotides, polynucleotides, difference between DNA and RNA, DNA structure – various types, DNA repair, DNA sequencing and PCR, recombinant DNA technology, DNA polymorphism (elementary ideas). RNA structure and its types 4.2 Biological functions of DNA and RNA, Genetic code-mutations and mutants (elementary ideas). 	12	CO1- CO5	K1 – K5
V	Chemistry of Enzymes and Vitamins 5.1 Enzymes: Definition, nomenclature, sources, classification and specificity; isoenzymes; factors affecting enzyme activity – substrate, pH, temperature, enzyme concentration. 5.2 Vitamins: Definition, classification – water soluble vitamins (B1,B2,B3,B6,B12 and vitamin C)and fat soluble vitamins (A,D,E and K)– source, deficiency diseases, and daily requirements.	12	CO1- CO5	K1 – K5

Self study

- Detoxification of ammonia
- Polenske number, Reichert-Meissl number
- Lock and Key model and induced fit models.
- Mechanism of inhibition (competitive, non- and uncompetitive and allosteric).
- Immobilization of enzymes and its applications.

Textbooks

1. Essential of Bio-Chemistry U.Sathyanarayana, 3rd edition, Books & Allied Pvt. Ltd., 2019.

2. Elementary Bio-Chemistry J.L.Jain, 2nd Revised edition, S. Chand & Company, 2007.

References

- 1. Principles of Biochemistry, Lehninger A.L. ,CBS Publishers, Delhi 2006.
- 2. Biochemistry, Stryer Lubert, W.H. Freeman and Co., New York, 2007.
- 3. Fundamentals of Biochemistry, Jain J.L., S. Chand & Co. New Delhi, 2007.

C O			Pr	ogram Out	comes						Program S	pecific Outc	omes				K L
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P O 8	PSO1	PSO2	PSO3	PSO4	PSO5	PS O6	PS O7	P S O 8	
C 0 1	3	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	К 1
C 0 2	-	1	3	-	-	-	-	-		2	3	-	-	-	-	-	К 2
C 0 3	-	3	3	-	-	-	-	-	-	1	3	3	-	-	-	-	К 3
C 0 4	-	2	3	-	-	-	-	-	-	-	3	3	-	-	-	-	K 4
C 0 5	-	-	2	2	3	-	-	-	-	-	-	2	3	-	-	-	К 5
W t A v g	3	2.25	2.75	2	3	-	-	-	3	2	3	2.66	3	-	-	-	
	Overall Mapping of the Course PO: 2.60 PSO: 2.73																

Allied Chemistry I (for Mathematics and Physics)

Cours	e Code							
Cre	dits	4						
Hours	/ Cycle	3						
Cate	gory	Part IV	Allied		Theory			
Sem	ester III							
Yea	r of	From the aca	demic year 2023-24 onwards	5				
Implem	entation							
Coi	irse	To acquire fur	ndamental knowledge in conce	ptual chemist	ry			
Obje	ctives							
CO#		(Course Outcome(s)		PO Addressed	Bloom's Taxonomy Levels (K1 to K5)		
On com	oleting the	e course succes	sfully, the student will be abl	e to				
CO1	Recall t	he basic prin y.	ciples physical, organic an	d inorganic	PO3	K1		
CO2	Have a b and the re Gain in kinetics,	asic understand elation between troductory kno surface chemis	ing of the principles of volume chemical structure and proper owledge on electrochemistry try and physical organic chemi	etric analysis ties. y, chemical stry.	PO3	K2		
CO3	Investiga performa stereoche	te polymer pro nce of system emistry of react	perties, amino acid nature, elec s, reaction kinetics, catalytic ions at a basic level.	ctrochemical activity and	PO3	К3		
CO4	Compare electroch stereoche	e and contrast p emical systems emical reactions	properties/types of polymers, a s, kinetic models, catalytic be s at a basic level.	amino acids, haviour and	PO3	K4		
C05	Synthesis have a chemistry	se the knowled comprehensive y.	ge gained through study of th understanding of the fund	nis course to amentals of	PO3	K5		

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	1.1 Mole concept, Molality, Molarity, Equivalent weight	12	CO1-	K1 – K5
	and Normality (numerical problems). 1.2 Principles of		CO5	
	volumetric analysis: Types of titrations; Acid – base			
	titration – Principle, different types and theory of acid –			
	base indicators (Quinonoid theory and Ostwald theory)			
II	2.1 Polymer Chemistry: Types of polymerization;	12	CO1-	K1 – K5
	Thermosetting and thermoplastics; Natural fibres – rubber,			
	cellulose and starch (structural description and biomedical		CO5	
	applications); 2.2 Aminoacids, polypeptides and proteins:			
	Classification of amino acids; Preparation and properties			
	of glycine; Zwitter ion and Isoelectric point; Peptides -			

	Synthesis of dipeptide; End group analysis; Primary, secondary and tertiary structures of proteins			
III	3 3.1 Acid – Base theories: Arrhenius, Lowry – Bronsted and Lewis theories; Dissociation constants of acids and bases, pKa, pKb and their significance; Buffer solutions and Buffering action 3.2 Chemical Kinetics: Order and Molecularity; Zero, first and second order reactions; Experimental methods for the determination of orderof a reaction; Activation energy – Effect of temperature on reaction rates and Arrhenius equation. (numerical problems) 3.3 Catalysis: Homogeneous and heterogeneous catalysis; Enzyme catalysis –Michaelis – Menten equation; General mechanism for heterogeneous catalysis.	12	CO1- CO5	K1 – K5
IV	 4.1 Electrochemistry: Specific and equivalent conductance; Kohlrausch's law – measurement of dissociation constant; Conductometric titrations for Acid – Base reactions only. 4.2 Galvanic cells: Standard electrode potential, Electrochemical series and Representation of cells and determination of cell potential and cell reactions. 4.3 Conducting polymers: Definition, examples, n- and p-type doping; Application of conducting polymers in batteries (basic aspects only) 	12	CO1- CO5	K1 – K5
V	5.1 Identification of positive and negative centres in common functional groups and types of reagents. 5.2 Physical organic chemistry: Energy profile diagram of chemical reactions – endothermic and exothermic reactions, transition state, intermediate and activation energy. 5.3 Stereochemistry: Molecular chirality, diastereomers, meso compound and racemic mixture; optical purity, enantiomeric excess, specific rotation and diastereomeric excess (Definitions only); Stereoisomerism in maleic acid, fumaric acid and tartaric acid.	12	CO1- CO5	K1 – K5
Self-stud	y			
Textbool 1. E E 2. F 3. F P 4. S R V	ks lements of Analytical Chemistry by R. Gopalan, P.S. Subram d., Sultan Chand and Sons, 2003. Fundamental concepts of Applied Chemistry by Jayashree Go Principles of Physical Chemistry by B.R. Puri, L.R. Sharma an ublishing House Pvt. Ltd., 2008 S. Ramakrishnan, Conducting Polymers – From a Laboratory esonance, 2 (1997) 48 – 58. 5. A textbook of organic chemist ishnoi, 3rd Ed., Vikas Publishing House Pvt. Ltd., 2009	aninam an sh, S. Char nd M.S. Pa Curiosity t ry by K.S.	d K. Ren nd & Co thania, V to the Ma Tewari	ngarajan, 3rd . Ltd., 2006. /ishal arket Place, and N.K.
REFERE 1. Pharm Pvt. Ltd., 2. Industr Press, 20 Swindell	NCES aceutical Applications of Polymers for Drug Delivery by Dav 2004. rial polymers, Speciality polymers and their applications by N 09. 3. Chemistry for the Life Sciences by Raul Sutton, Bernar s,Second Edition, CRC Press, 2009.	vid Jones, I 1. Chanda rd Rockett	Rapra Te and S.K , and Pet	cchnology . Roy, CRC er G.

B.Sc. Course Articulation Matrix

Course Outcomes			P	rogram Ou	itcomes						Р	rogram Spe	cific Outcor	nes			K L
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P O 8	PS O1	PSO2	PSO 3	PSO4	PSO5	PSO6	PSO7	P S O 8	
CO 1	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K 1
CO 2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	К 2
CO 3	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	К 3
CO 4	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K 4
CO 5	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	К 5
Wt. Avg.	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
												Overall	Mapping of	the Course	PO: 3.0 PSO: -		

ALLIED CHEMISTRY – I [FOR BOTANY & ZOOLOGY]

Cours	e Code									
Cre	dits	3								
Hours	/ Cycle	4								
Cate	gory	Part III	Allied		Theo	ry				
Semester		III								
Yea	r of	From the academic year 2023-24 onwards								
Implem	entation									
Coı Obje	ırse ctives	To understand the chemistry of Amino acids, carbohydrates including their preparation, properties, classification and appreciate their biological significance. To comprehend the role of basic organic and physical chemistry concepts in day to day life								
CO#		Cou		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On com	pleting the	e course succes	sfully, the student will be abl	e to						
CO1	Recall the Stoichior carbohyd Colloids and Subscience compound the store of the sto	he fundamenta netric and volu rates, (iii) there and theories of titution reaction ds	of (i) s and istry, aation cyclic	PO3	K1					
CO2	Understa Stoichior carbohyd Colloids	nd the fundam netric and volu rates, (iii) ther and theories of	ental concepts and principles of metric analysis, (ii) Aminoacids modynamics, (iv) Electrochem acids & Bases and (v) Elimin	of (i) s and istry, ation	PO3	K2				

	and Substitution reactions, Stereochemistry and heterocyclic compounds		
CO3	Apply the fundamental concepts and principles of (i) Stoichiometric and volumetric analysis, (ii) Aminoacids and carbohydrates, (iii) thermodynamics, (iv) Electrochemistry, Colloids and theories of acids & Bases and (v) Elimination and Substitution reactions, Stereochemistry and heterocyclic compounds, to simple analytical and numerical problems	PO2, PO3	К3
CO4	Compare the fundamental concepts and principles of (i) Stoichiometric and volumetric analysis, (ii) Aminoacids and carbohydrates, (iii) thermodynamics, (iv) Electrochemistry, Colloids and theories of acids & Bases and (v) Elimination and Substitution reactions, Stereochemistry and heterocyclic compounds	PO3	K4
CO5	Justify the simple chemical facts based on the fundamental concepts and principles of (i) Stoichiometric and volumetric analysis, (ii) Aminoacids and carbohydrates, (iii) thermodynamics, (iv) Electrochemistry, Colloids and theories of acids & Bases and (v) Elimination and Substitution reactions, Stereochemistry and heterocyclic compounds	PO3	K5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 1.1 Stoichiometry: Mole concept, Molality, Molarity, Equivalent weight and Normality (numerical problems). 1.2 Principles of volumetric analysis: Types of titrations; Acid – base titration – Principle, different types and theory of acid – base indicators (Quinonoid theory and Ostwald theory). 	12	CO1- CO5	K1 – K5
Π	 2.1 Aminoacids, polypeptides and proteins: Classification of amino acids; Preparation and properties of glycine; Zwitter ion and Isoelectric point; Peptides – Synthesis of dipeptide; End group analysis; Primary, secondary and tertiary structures of proteins. 2.2 Carbohydrates: Classification – sugars and polysaccharides; Basic structural description of glucose, fructose, sucrose, starch and cellulose (open, cyclic and Haworth structures); Mutarotation – Definition and illustration using glucose; Osazone formation reaction of glucose and fructose. 	12	CO1- CO5	K1 – K5
III	 3.1 Terminologies in thermodynamics: System and surroundings, State and Path functions, Intensive and extensive properties – definition and examples. 3.2 Laws of Thermodynamics: Zeroth, First and Second Law of Thermodynamics (statements only). 	12	CO1- CO5	K1 – K5

	Concepts of heat, work, internal energy, enthalpy, entropy and free energy. Exergonic and endergonic			
	processes.			
	3.3 Bioenergetics: Definition, relationship between			
	standard free energy change (Δ Go) and equilibrium			
	constant (Keq), standard free energy changes at pH 7.0			
	$(\Delta Go')$, difference between ΔGo and $\Delta Go'$. ATP as			
	universal currency of free energy in biological system:			
	Shift of equilibria of coupled reactions in ATP			
	hydrolysis			
IV	4.1 Electrochemistry: Electrolytic and metallic	12	CO1	K1_K5
1,	conduction: Specific and equivalent conductances:	12	CO1-	
	Measuring electrical conductance in biological		COS	
	melasulas (Nuclaic saids and proteins) and its			
	indications (Nucleic actus and proteins) and its			
	4.2 Colloids: Types (based on dispersion			
	medium/dispersed phase and affinity towards			
	solvent); Origin of charge on colloidal particles with			
	illustrations; Schematic representation of electrical			
	double layer; Coagulation of colloids by the addition			
	of electrolyte and flocculation value; Protective			
	colloids and gold number; Electrophoresis and			
	electro-osmosis; Separation of proteins by Gel			
	electrophoresis.			
	4.3 Acid – Base theories: Arrhenius, Lowry –			
	Bronsted and Lewis theories; Definition of			
	dissociation constants of acids and bases, pKa, pKb			
	and their significance; Buffer solutions: Definition			
	and Henderson equation (derivation not required);			
	Significance of pH and buffer solutions in biological			
	system (carbonate and phosphate buffers).			
V	5.1 Identification of positive and negative centres in	12	CO1-	K1 – K5
	common functional groups and types of reagent;			
	Nucleophilic substitution reactions – SN1 and SN2;		CO5	
	Elimination reactions - E1 and E2; Nucleophilic			
	addition to carbonyl group (hydrolysis of peptide			
	bond)			
	5.2 Stereochemistry: Molecular chirality,			
	diastereomers, meso compound and racemic mixture;			
	optical purity, enantiomeric excess, specific rotation			
	and diastereomeric excess (Definitions only);			
	Stereoisomerism in maleic acid, fumaric acid and			
	tartaric acid.			
	5.3 Heterocyclic compounds: Preparation and			
	Electrophilic aromatic substitution of furan, pyrrole.			
	thiophene and pyridine: Uses of ranitidine and			
	atorvastatin.			
Self_stud	V			l
Rola	y of EDTA in complexometric titrations			
	ment atmating of mateing and showing meeting of Ch			

- Applications of zeroth, first and second law of thermodynamics in every day life.
- Applications of colloids in cosmetics and paint industry.
- Optical activity of Glucose and fructose.

Textbooks

1. Elements of Analytical Chemistry by R. Gopalan, P.S. Subramaninam and K. Rengarajan, 3rd Ed., Sultan Chand and Sons, 2003.

2. Organic chemistry of natural products, Volume I by Gurdeep R Chatwal, Edited by M. Arora, Himalaya Publishing House, 2010.

3. Principles of Physical Chemistry by B.R. Puri, L.R. Sharma and M.S. Pathania, Vishal Publishing House Pvt. Ltd., 2008

4. Biological Thermodynamics by D.T. Haynie, 2nd Ed., Cambridge University Press, 2008.

5. A textbook of organic chemistry by K.S. Tewari and N.K. Vishnoi, 3rd Ed., Vikas Publishing House Pvt. Ltd., 2009.

References

1. Biochemistry by L. Stryer, 2nd edition, W.H. Freeman & Co., 1981.

2. Chemistry for the Life Sciences by Raul Sutton, Bernard Rockett, and Peter G. Swindells, 2nd Ed., CRC Press, 2009.

Course Outcomes		Program Outcomes Program Specific Outcomes															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS O1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	K L
CO 1	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K 1
CO 2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K 2
CO 3	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	К 3
CO 4	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K 4
CO 5	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K 5
Wt. Avg.	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
												Overall M	Mapping of the	e Course	PO: 2.5 PSO:		

ALLIED CHEMISTRY PRACTICAL

Course	Code										
Cred	lits	4									
Hours /	Cycle	2									
Categ	gory	Part	III	ALLIED]	PRACTICAI	ĴS				
Seme	ster	III &	IV								
Year	• of	From	the acade	emic year 2023-24 onwards							
Impleme	entatio										
n											
Cou Objec	 To understand the principles of quantitative analysis (volumetric method) and estimate the amount of sample present in the given solution. To understand the principles of qualitative analysis of organic compounds and identify i) aliphatic / aromatic ii) saturated / unsaturated iii) presence of nitrogen iv) functional group by systematic qualitative analysis of given organic compound. 										
CO#	Course Outcome(s) PO Addressed River (K1 to K5)										
On com	oleting t	he cou	rse succes	sfully, the student will be able	e to						
CO1	Recall qualita	the exp tive org	perimental ganic analy	procedure for the volumetric an vsis.	alysis and	PO3	K1				
CO2	Compi	le the r	eport of th	e experiments in an organized	way.	PO3, PO5	K2				
CO3	Tabula manne	te/Reco r relate	ord the ex d to quanti	perimental observations in a stative and qualitative analysis.	systematic	PO3, PO5	К3				
CO4	Determine (quantitative) and infer (qualitative) the observations made during the experiment and present the report with systematic procedure during regular laboratory classes.PO3, PO5K4										
CO5	Determ made d proced	nine (q luring t ure dur	uantitative he experim ring ICA.) and infer (qualitative) the obtained and present the report with s	servations systematic	PO3, PO5	К5				

SYLLABUS

CONTENT I. VOLUMETRIC ANALYSIS (Semester III)

- <u>A. Acid Base Titration</u>
- 1. Estimation of sodium hydroxide
- 2. Estimation of sodium carbonate
- 3. Estimation of sodium carbonate and sodium bicarbonate in a mixture
- 4. Estimation of hydrochloric acid
- B. Redox Titration
- 5. Permanganometry: Estimation of ferrous sulphate /ferrous ammonium sulphate
- 6. Permanganometry: Estimation of Oxalic acid

		7. Iodometry: Estimation of copper
		8. Iodometry: Estimation of potassium dichromate
		C. Complexometric Titrations
		9. Estimation of magnesium
	II.	ORGANIC QUALITATIVE ANALYSIS (Semester IV)
		Functional Groups
		• Aldehyde (aromatic) • Ketone (aliphatic and aromatic)* • Carbohydrate
		• Carboxylic acid (mono and dicarboxylic) • Phenol • Aromatic primary amine
		Amide and diamide Aromatic Nitro Compound
		Systematic analysis of organic compounds containing one functional group and
		characterization by confirmatory tests. *Need Not be given for examination - ketone
Tex	xtbook	s
1.	Gnan	apragsam and Ramamurthy. Organic chemistry: Lab manual. Viswanathan S Printers and
	Publis	shers Pvt Ltd, 2009.
2.	Ahluv	valia, V. K., and Sunita Dhingra. <i>College practical chemistry</i> . Universities Press, 2005.

References

1. Vogel, Arthur Israel, and B. V. Smith. *Elementary practical organic chemistry*. Wiley, 1966

	D.50	. Cours		nation r	VIAUIA												
Course Outcom es			F	Program Out	comes						Program	Specific Ou	itcomes				K L
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P 0 8	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PSO7	P S O 8	
CO 1	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	К 1
CO 2	-	-	3	-	2	-	-	-	-	-	-	-	-	-	-	-	К 2
CO 3	-	-	3	-	3	-	-	-	-	-	-	-	-	-	-	-	К 3
CO 4	-	-	3	-	3	-	-	-	-	-	-	-	-	-	-	-	К 4
CO 5	-	-	3	-	3	-	-	-	-	-	-	-	-	-	-	-	К 5
Wt. Avg.	-	-	3	-	2.75	-	-	-	-	-	-	-	-	-	-	-	
												Overall Ma	pping of	f the Course	PO: 2.875 PSO: -		

CLASSICAL THERMODYNAMICS

Cour	rse Code														
C	redits	4													
Hour	s / Cycle	3													
Ca	tegory	Part	NA	Core			Theor	y							
Sei	mester	IV													
Ye	ear of	From	1 the academic year 2023-24 onwards												
Imple	ementatio														
	n														
Cours Objec	se ctives	1. 2. 3.	To expo To study To reco parameter	se the students to various conce y the heat changes occurring in ognize the mathematical interpre-	pts a chen retati	nd laws o nical react ions of va	f therm tions arious t	odynamics hermodynamic							
CO#	ŧ	1	Cou	rse Outcome(s)		PSC Addres) ssed	Bloom's Taxonomy Levels (K1 to K5)							
On co	mpleting	the cou	rse succes	sfully, the student will be able	e to										
CO1	Recall in class	and def sical the	fine the ba	sic principles and terminology nics.	used	PSO	1	K1							
CO2	(i) Our applic differe	tline the ations (ent types	laws of th ii) Investi s of system	ermodynamics and demonstrate gate thermodynamic propertie ns.	e its s of	PSO	1	K2							
CO3	Apply chemi thermo	ther cal/phys odynami	rmodynam sical char ic paramet	nic principles to environges with reference to var ters.	sage ious	PSO PSO	3, 04	K3							
CO4	Exami system thermo	ne ther ns and odynami	modynam ascertain ic paramet	ic behaviour of different type the relationship between var ters.	s of ious	PSO PSO PSO	3, 4, 5	K4							
CO5	Critica contex differe	ally eva t of c ent spont	luate the hange in taneous pr	thermodynamic concepts in thermodynamic parameters ocesses and systems in equilibr	the for ium.	PSO PSO PSO	3, 4, 95	K5							
				SYLLABUS											
UNIT			CC	DNTENT		HOURS	COs	BLOOM'S							

UNII	CONTENT	HOUKS	COS	BLOOM'S TAXONOMY
				LEVEL
Ι	1.1 1.1 First law of thermodynamics – internal energy –	9	CO1	K1 – K5
	enthalpy – Hess's law of heat summation.		-	
	1.2 1.2 Applications of I law: Expansion and work done of		CO5	
	an ideal gas in thermodynamic properties (q, w, ΔU and			
	ΔH) for reversible and irreversible processes including			
	free expansion: (i) Isothermal expansion (ii) Adiabatic			
	expansion; Joule-Thomson effect, Joule-Thomson			
	coefficient and its significance; inversion temperature			

	(numerical problems); Limitations of I law; Need for the II law			
Π	 2.1 Thermochemistry: Measurement of heat changes: Heat of reaction. Calculation of change in internal energy and enthalpy, relation between ΔH and ΔU of a reaction, standard states and standard enthalpy changes of reactions (combustion, neutralization and formation), determination of enthalpies of reactions (numerical problems). 2.2 Variation of enthalpy change of reaction with temperature (Kirchoff's equation), Hess's law – applications. Determination of calorific value using Bomb calorimeter, bond energy and its applications. 2.3 Spontaneous processes, cyclic process, heat engine, 	9	CO1 - CO5	K1 – K5
	Carnot cycle and its efficiency, Carnot theorem, various statements of second law,			
III	 3.1. 3.1 The concept of entropy, Entropy change in Isothermal expansion (ideal gas), Entropy change in reversible and irreversible processes, Entropy change accompanying phase change, calculation of Entropy change of an ideal gas with P, V and T, Entropy of mixing and its physical significance. 3.2. Helmholtz work function-Gibbs free energy -Criteria of spontaneity. Maxwell's equations and thermodynamics of open system (partial molar properties).Gibbs-Helmholtz equation and its applications. 3.3. 3.3 Chemical potentials of a component in an ideal mixture, thermodynamic functions of mixing of ideal gases, Gibbs-Duhem equation, variation of chemical potential with T and P 	9	CO1 - CO5	K1 – K5
IV	 4.1 Chemical equilibrium: Law of mass action, various forms of equilibrium constants (Kp, Kc and Kx), relation between Kp and Kc, significance of equilibrium constants, derivation of thermodynamic equilibrium constant, and its relationship with change in standard free energy (van't Hoff isotherm), van't Hoff isochore, de Donder's concept of equilibrium, chemical affinity. 4.2 Le-Chatelier-Braun principle: Factors affecting the state of the equilibrium. 4.3 Application of Le-Chatelier-Braun principle to homogeneous gaseous reactions: Dissociation of N2O4, NH3, HI and PCI5. 	9	CO1 - CO5	K1 – K5
V	 5.1 Nernst heat theorem - formulation of third law, determination of absolute entropy of solids, liquids and gases, residual entropy, exceptions of third law. 5.2 Solutions: Thermodynamics of ideal solutions - Raoult's law and Henry's law. 5.3 Colligative properties: Depression of freezing point, elevation of boiling point; osmotic pressure - 	9	CO1 - CO5	K1 – K5

			ez ar al	xperime nalogy onorma	ental n betwee l moleo	nethods n dilut cular w	s, laws te solu reights	s of os tions a – van't	motic nd gase Hoff fa	pressure cous sys actor (i).	e and tems;						
	Tex	tboo	ks														
	1.P	rincip	oles of	Physic	al Chei	nistry,	B.R. F	uri, L.I	R. Shar	ma and	M.S. Pa	thania,	Vishal	Publ	ishing (Co.;	
	47t	h edn	., (201	7)													
	. 2.	Phys	ical ch	emistry	, Keith	n J. Lai	dler an	d John	H. Mei	ser, CB	S Publis	shers, 2r	nd India	an ed	n.,2006		
	3. '	Therr	nodyn	amics, (G. Raja	aram, J	.C. Ku	riacose	, Shoba	nLal Na	agin Cha	and & C	co., 200	6.			
		Refe	erence	S													
	1.	Phys	sical C	hemist	ry, P. A	tkins,	7 thed	1.,Oxfo	rd univ	ersity pi	ress, 200)1					
	2.	Phy	sical C	Chemist	ry, G.	W. Cas	stellan,	3 rd Eo	dition, 1	Narosa p	oublishi	ng hous	e, 1985	j			
	Sug	ggeste	ed Rea	ıding													
	1.	M.V	V. Zem	ansky,	R.H. D	ittman	, Heat	and The	ermody	namics,	Tata M	cGraw]	Hill, 19	81.			
	2.	M. I	F.Grar	nville, S	student	Misco	nceptio	ons in T	hermo	dynamic	es, J. Ch	em. Edu	ı. 62 (1	985)	847.		
	3.	L. S	. Barte	ll, Stori	es to M	lake Th	nermod	lynamic	es and F	Related S	Subjects	More P	alatabl	e, J. (Chem. E	du.	
		78 (2	2001)	1059.													
	4.	D. N	I. Hagi	ue, Fast	React	ions, W	/iley- I	nterscie	ence, N	ew York	k, 1971.						
	5.	J. W	. Mooi	re and H	R. G. P	earson,	Kinet	ics and	Mecha	nisms, J	ohn Wi	ley & So	ons, Ne	ew Yo	ork, 198	1.	
	6.	M. I	R. J. D	ack, Th	e Influ	ence of	f Solve	nts on (Chemic	al React	tivity, J.	Chem.	Educ. :	51 (1	974) 23	1	
	On	line I	Resour	ces (ac	cessed	on)											
	1. ł	http://	epgp.in	nflibnet	ac.in/l	Home/	ViewSi	ubject?	catid=1	3G8Vot	ıhmrFfu	hs6rkiy	TA==				
	2. ł	http://	epgp.in	nflibnet	ac.in/l	Home/	ViewSi	ubject?	catid=1	3G8Vot	ıhmrFfu	hs6rkiy	TA==				
	3. ł	http://	epgp.in	nflibnet	t.ac.in/l	Home/	ViewSi	ubject?	catid=1	3G8Vot	ıhmrFfu	hs6rkiy	TA==				
B.Sc. C	Cours	e Art	iculati	on Mat	rix												
Cour	rse				Program	Outcomes						Program	n Specific C	Outcomes	\$		
es	.0111		-			•										_	
	1	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PSO 7	PS 8
CO	1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-
CO	2	-	3	-	-	-	-	-	-	2	-	-	-	-	-	-	+
COS	3	-	3	3	-	-	-	-	-	-	-	3	2	-	-	-	+

CO 4

CO 5

Wt. Avg. 3

3

3

-

-

2

3

2.5

-

-

-

-

-

-

-

2.5

-

-

3

3

3

-

-

3

3

3

3

3

3

Overall Mapping of the Course

-

-

-

-

PO: 2.8 PSO: 2.8

-

-

3

3

2.7

K L

K 1 K 2 K 3 K 4 K 5

GREEN AND NANO CHEMISTRY

Cours	e Code										
Cre	dits	3									
Hours	/ Cycle	3									
Cate	gory	Part III	ELECTIVE		Theo	ory					
Sem	ester	IV									
Yea	r of	From 2023-2	4 onwards								
Implem	entation										
Cou Obje	ırse ctives	To understand their preparati elements of no understand the	and appreciate the chemistry of on, properties, classification, a eighbouring groups in the perio eir properties	of main g pplication dic table	roup eleme ns, relations and the cor	nts including ship with ncepts to					
CO#		Cou	Course Outcome(s) PSO Addressed Bloom's Taxonomy Levels (K1 to K5)								
On com	oleting the	e course succes	sfully, the student will be able	e to							
CO1	Recall the chemistry	ne functional any and (ii) nano	nd working principles of (i) g chemistry	green	PSO1, PSO2	K1					
CO2	Understa	nd (i) severa	l real-world examples of g	green	PSO1,	K2					
	chemistr	y in improving	the sustainability performance	e of	PSO3,						
	their pi	roducts (ii)	various synthetic methods	for	PSO4						
	nanomate	erials and (iii)	various characterization techni	ques							
	for nanor	naterials	0 1 1 0 1	·	D CO2	WO.					
CO3	Apply (i)) the principles	of green chemistry for synthes	hosis	PSO3,	K3					
	and char	ne compounds	(II) the various methods of synthesis for selective nanomates	riale	r 504						
CO4	(i) Com	pare the variou	is green chemistry principles	and	PSO3	K4					
	green me	ethods of svntl	resis and (ii) compare the var	rious	PSO4						
	synthesis	and characteri	zation methods of nanomateria	ls.	1~~.						
CO5	(i) Evalu	ate the green	synthetic methods based on g	green	PSO4,	K5					
	chemistr	y principles and	d (ii) Explain the various princ	iples	PSO5						
	and tech	hniques of sy	ynthesis and characterization	n of							
	nanomate	erials									
			SYLLABUS								
UNIT		CO	NTENT	HOUR	S COs	BLOOM'S TAXONOMY LEVEL					
Ι	Introduct	ion to Green C	hemistry - Green Chemistry –	9	CO1-	K1 – K5					
	Definitio	n, Need for Gre	een Chemistry, Goals of		CO5						
	Green Ch	nemistry; Twelv	e principles of green								
	chemistry	y, Limitations/C	Obstacles in the pursuit of the								
	goals of Q	Green Chemistr	y; Iools of green chemistry-								
	Alternati	ve teed stocks s	starting material, Alternative								
	Reagents	, Alternative Sc	olvents, Alternative products								

	/Target molecules, Process Analytical Chemistry, Alternative Catalysts; Green analytical chemistry – introduction, basis and a green evaluation of existing analytical methods.			
Π	Unit II: Designing of Green Synthesis - Designing a green synthesis – Atom economy - evaluating the effects of chemistry – Examples of synthesis involving basic principles of Green Chemistry: methyl methacrylate, paracetamol and Ibuprofen; Microwave Assisted Reactions in Water- Hofmann elimination, Diels Alder reactions and deacetylation; Sonochemical reactions - Saponification and Simmons-Smith Reaction; Supercritical water oxidation (SCWO).	9	CO1- CO5	K1 – K5
III	Unit III: Introduction to Nanochemistry	9	CO1-	K1 – K5
	The science of nano- Significance of nano-sized materials – Size effect properties 1.2 Types of nanostructures- 0D, 1D. 2D, 3D and nano composites – Definition and examples. Carbon based nanomaterials: graphene, fullerene, carbon nanotubes(CNTs). 1.3 Synthetic methods: Top-down methods (physical methods) – Ball milling, Lase ablation, sputtering and physical vapour deposition method; Bottom-up methods (Chemical methods) – Co-precipitation, reduction, sol-gel, hydrothermal and surfactant-assisted methods.		CO5	
IV	 Unique properties and applications of nanomaterials 2.1 Metal nanoparticles- Au, Ag, Pt – Size and shape control of metal nanoparticles and study of their optical, electronic properties. 2.2 Metal oxides nanomaterials- semiconducting property and bandgap energy, application as photocatalyst for pollution degradation and in bio-medical applications (antimicrobial agent, bio-imaging and drug delivery). 2.3 Nanowires – Applications (MEMS and NEMS). 2.4 Nanosensors: CO2 sensor, electrochemical sensor, optical nanosensor and biosensor. 	9	CO1- CO5	K1 – K5
V	Unit V – Morphological study (9 hours) Electron microscopy: Basics of Electron scattering and Electron-Atom Interaction (Auger electron emission, Back scattered electron, Secondary electrons and Characteristic X-ray emission); SEM and TEM – Principle and Schematic representation of ray path of light for SEM and TEM; Instrumentation of SEM and TEM	9	CO1- CO5	K1 – K5

Self-study

- Synthesis of nanoparticles by using plant extracts (green method) •
- Mechanism of photocatalytic activity of metal oxides towards water splitting
- Comparison between SEM and TEM; description of STEM •
- Recent advances in Supercritical fluid extraction

Textbooks

1. Nano: The essentials, T Pradeep, Tata McGraw-Hill publishing company Ltd, 2007.

2. Introduction to nanotechnology, C.P. Poole and F.J. Owens, Wiley Interscience, 2003.

3. P. T. Anastas and j. C. Warner, Green Chemistry- Theory and Practice (Indian Edition), Oxford University Press, 2008.

4. Miguel de la Guardia, Sergio Armenta - Green Analytical Chemistry(Comprehensive Analytical Chemistry 57), Theory and Practice, Volume 57, Elsevier 2010.

5. V.K. Ahluwalia& M.R. Kidwai: New Trends in Green Chemistry, Anamalaya Publishers (2005) References

1. Nanoscale materials in chemistry, Kenneth, J. Klabunde, Wiley Interscience, 2001.

2. Lancaster, M. Green Chemistry: An Introductory Text RSC Publishing, 2nd Edition, 2010.

3. https://www.acs.org/content/acs/en/greenchemistry/research-innovation/tools-for-

greenchemistry.html (accessed on 10 May 2019).

Course Outcomes	Program Outcomes Program Specific Outcomes K Icomes Icomes Icomes Icomes											K level					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	2	-	-	-	-	-	-	K1
CO 2	-	3	2	-	-	-	-	-	3	-	2	3	-	-	-	-	K2
CO 3	-	3	2	-	-	-	-	-	-	-	2	3	-	-	-	-	K3
CO 4	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	K4
CO 5	-	-	2	-	2	-	-	-	-	-	-	2	2	-	-	-	K5
Wt. Avg.	-	3	2	-	-	-	-	-	3	2	2.3	2.75	2	-	-	-	-
Overall Mapping of the Course PO: 2 PSO									PO: 2.5 PSO: 2	5 41							

FOOD AND COSMETICS CHEMISTRY

Cours	e Code					
Cre	dits	3				
Hours	/ Cycle	3				
Cate	gory	Part III	ELECTIVE		Theo	ry
Sem	ester	IV				
Yea Implem	r of entation	From 2023-2	4 onwards			
Cou Obje	ırse ctives	 To exp To gai To stu 	oose the students to the chemist n knowledge on the adulterants dy the regulatory control of foo	ry invo in foc od com	olved in food a od and method position, quali	nd cosmetics s to detect them ty and safety
CO#		Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)
On com	pleting the	e course succes	sfully, the student will be able	e to		
CO1	Recall (i) and cosr methods for food cosmetic) the functional netics, (ii) the to detect them, safety and (i s	role of various constituents of food adulterants and prelimi (iii) regulations and laws enfo v) hazards of food additives	food nary orced and	PSO1, PSO2	K1
CO2	Understa food and methods for food	nd (i) the funct cosmetics, (ii) to detect them, safety and (i	ional role of various constituen the food adulterants and prelimi (iii) regulations and laws enfo v) hazards of food additives	ts of nary orced and	PSO1, PSO3, PSO4	K2
CO3	Apply the cosmetic hazardou	he fundamenta constituents of food and c	al concepts related to food to understand the properties osmetic products	and and	PSO3, PSO4	K3
CO4	Analyze (ii) hazar related fu	(i) the roles of rds of food add indamental con	food and cosmetic constituents litives and cosmetics, based or cepts	and the	PSO3, PSO4	K4
CO5	Commen and (ii) h the relate	at on (i) the role nazards of food of fundamental	s of food and cosmetic constitu- additives and cosmetics, base concepts	ients d on	PSO4, PSO5	K5
			SYLLABUS			

	SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL									
I	1.1 Food Chemistry: Introduction; Constituents of food: Carbohydrates, proteins, fats and lipids & vitamins – classification, examples their functional role.	9	CO1- CO5	K1 – K5									

	1.2 Classification of alteration occurring at handling			
	processing or storage - Change of texture nutritional			
	value and safety.			
	1.3 Water: Types of water. Interaction of water with			
	food components and its influence on food quality and			
	stability: removal of water from foods (concentration			
	and dehydration)			
II	Food Additives: Acids bases buffer systems and	9	CO1-	K1 – K5
	salts sequestrants antioxidants antimicrobial agents	,	001	
	sweeteners texturizers colourants stabilizers and		CO5	
	emulsifiers – definition / meaning examples and their		000	
	functions: Hazards of food additives			
ш	3.1 Detection of food adulterants · Common	9	CO1-	K1 – K5
	adulterants in vegetable oils fats spices cereals and	,	001	
	nulses coffee tea spices milk and milk products:		CO5	
	principles involved in the detection of food		000	
	adulteration			
	3.2 Regulatory control of food composition, quality			
	and safety. Overview of safety. US food laws			
	Canadian food laws, EU food laws, International food			
	law. WHO standards: Indian food laws: ISI			
	specifications, packing and label requirements.			
	Essential commodities act, AGMARK.			
IV	4.1 Perfumes, antiperspirants and deodorants – Active	9	CO1-	K1 – K5
	ingredients and their functions.		COS	
	4.2 Lipsticks, eyebrow pencils, eye shadow, eyeliners,		000	
	mascara, eye makeup removers – Active ingredients			
	and functions			
	4.3 Cold creams, foundation creams, moisturising			
	creams, bleachers, Anti ageing creams, sunscreen			
	lotions, Depilatories, face and skin powders – Active			
	ingredients and their functions			
V	5.1 Hair cosmetics: Permanent and cold hair waving	9	CO1-	K1 – K5
	preparations - dry and liquid shampoos, dandruff			
	shampoos, conditioners, hair colourants (temporary,		CO5	
	semi-permanent and permanent), hair lighteners, hair			
	lotions, hair tonics, hair oils, hair creams, shaving			
	creams and after shave preparations – Active			
	ingredients and their functions.			
	5.2 Cosmetics for teeth: tooth pastes, tooth powders,			
	liquid preparations, mouth washes, fillers, antiplaque			
	agents; Teeth whiteners.			
	5.3 Cosmetics for nail, manicure preparations, cuticle			
	creams, nail bleach, nail enamel, enamel removers,			
G.16 G4	nail strengthener's and nail elongators.			
Self-Stu	dy			
	leterocyclic compounds in cosmetics	C 1		
• (one method of analysis of carbohydrates and proteins in f	100 0		
• (care and hazards in the use of cosmetics.			

• Nanotechnology for the food and bioprocessing industries

- Chemistry of cosmetics in antiquity ٠
- Trends in Natural cosmetics •

Textbooks

- 1. Mechanism and Theory in Food Chemistry, Dominic W.S. Wong, 2nd Edition, Springer International Publishing, 2018
- 2. FENNEMA'S Food Chemistry, Srinivasan Damodaran, Kirk L. Parkin (edited), 5th edition, CRC Press, Taylor & Francis Group, 2017.
- 3. W.A. Poucher, Perfumes, cosmetics and soaps Vol 3, 9th Edition

References

- Principles of Food Chemistry, John M. deMan, 3rd Edition, Aspen Publishers Inc. USA, 1999
 Harry's cosmeticology, J.B. Wilkinson and R.J. Moore,8th Edition.

Course Outcomes	Program Outcomes Program Specific Outcomes												K leve				
																	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO	PSO	PSO4	PSO	PSO6	PSO	Р	
										2	3		5		7	S	
																0	
																8	
CO 1	-	3	-	-	-	-	-	-	3	2	-	-	-	-	-	-	K1
CO 2	-	3	2	-	-	-	-	-	3	-	2	3	-	-	-	-	K2
CO 3	-	3	2	-	-	-	-	-	-	-	2	3	-	-	-	-	K3
CO 4	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	K4
CO 5	-	-	2	-	2	-	-	-	-	-	-	2	2	-	-	-	K5
Wt. Avg.	-	3	2	-	-	-	-	-	3	2	2.3	2.75	2	-	-	-	-
Overall Mapping of the Course											PO: 2.5	5					
										PSO: 2	2.41						

ALLIED CHEMISTRY II (FOR MATHEMATICS AND PHYSICS)

Course Code										
Credits	3									
Hours / Cycle	4									
Category	Part III	Allied	The	ory						
Semester	IV									
Year of	From the aca	ademic year 2023-24 onwards								
Implementation										
Course	To acquir	e the knowledge of chemistry in	comprehending va	arious physical						
Objectives	processes									
CO#	Course Outcome(s) PO Addressed Bloom Taxono Level (K1 to I									
On completing the course successfully, the student will be able to										
CO1 Recall Coord (iv) C	Recall the fundamental concepts and principles of (i) PO3 Coordination chemistry, (ii) Solid State, (iii) nanochemistry, (iv) Cheminformatics and (v) Photochemistry									
CO2 Under Coord (iv) C	stand the fundam ination chemistry neminformatics an	ental concepts and principles of , (ii) Solid State, (iii) nanochemis nd (v) Photochemistry	f (i) PO3 stry,	K2						
CO3 Apply Coord (iv) C analyt	the fundamenta ination chemistry heminformatics a cal and numerica	al concepts and principles of , (ii) Solid State, (iii) nanochemis and (v) Photochemistry, to sin l problems	(i) PO2, PO3 stry, nple	К3						
CO4 Analy of (i) nanoc Photo	Analyze / Compare the fundamental concepts and principlesPO3K4of (i) Coordination chemistry, (ii) Solid State, (iii)nanochemistry, (iv) Cheminformatics and (v)PO3									
CO5 Justify concep Solid (v) Ph	ustify the simple chemical facts based on the fundamental pO3 K5 concepts and principles of (i) Coordination chemistry, (ii) Solid State, (iii) nanochemistry, (iv) Cheminformatics and v) Photochemistry									
		SYLLABUS								

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
				LEVEL
Ι	Unit I	12	CO1-	K1 – K5
	 1.1 Nomenclature and theories: IUPAC nomenclature; Pauling theory (VBT); Elementary ideas of Crystal Field Theory and its application in splitting of d- orbitals in octahedral field. 1.2 Isomerism: Structural isomerism – Ionization, linkage, ligand and hydrate isomerisms; Optical 		CO5	

	and geometrical isomerism of four coordinated complexes.1.3 Chelates: Definition and examples; Factors affecting stability of chelates.			
II	 Unit II 2.1 Crystal systems: Crystal lattice, unit cell and unit cell parameters; Miller indices; Lattice planes in cubic crystals; Crystal systems and Bravais lattices. 2.2 Solid state reactions:Definition and illustrations; Reactivity of solids 2.3 Point defects in crystal structures:Schottky, Frenkel, metal excess and metal deficient defects and Applications of defects 	12	CO1- CO5	K1 – K5
III	 Unit III 3.1 Introduction to nanochemistry: Significance of nano-sized materials – Size effect properties; types of nanomaterials - Quantum dots (0 D), Nanorods and nanowires (1 D), Nanosheets (2 D) and nanocomposites – Definition only. 3.2 Chemical methods (reduction and Sol-gel) synthesis with examples. 3.3 Scanning Electron Microscopy and Transmission Electron Microscopy – Principle and instrumentation (schematic representation). 	12	CO1- CO5	K1 – K5
IV	 Unit IV 4.1 Cheminformatics: Introduction; Databases and their types; Online data bases (chemical and biomolecules); Drug designing and Five classic steps in drug development. 4.2 Industrial Chemistry: Fuel gases – Composition, industrial preparation and uses of water gas, producer gas and bio gas; Glass – composition and uses of borosilicate, photochromic and safety glasses; Corrosion – meaning and control of corrosion through galvanization, modification of environment and use of anodic and cathodic inhibitors. 	12	CO1- CO5	K1 – K5
V	Unit V 5.1 Electronic transitions in organic molecules:Chromophore, auxochrome, bathochromic shift, hypsochromic shift, hyperchromic shift and hypochromic shift; Different types of electronic transitions and their significance in structural elucidation (concepts only).	12	CO1- CO5	K1 – K5

5.2 Photochemistry:G	rothus – Draper	law, Stark –		
Einstein law and	Beer – Lambert			
yield (simple	numerical	problems);		
Photophysicalproc	esses	(Jablonski		
diagram);Chemilu	minescence.			
Textbooks				

- 1. Principles of physical chemistry by B.R. Puri, L.R. Sharma and M.S. Pathania, Vishal Publishing House Pvt. Ltd., 2008.
- 2. Textbook of engineering chemistry by R. Gopalan, D. Venkappayya and SoluchanaNagarajan, Vikas Publishing House Pvt. Ltd
- 3. Principles of nanoscience and nanotechnology, M.A. Shah and Tokeer Ahmad, Alpha Science International, 2010.
- 4. An introduction to chemoinformatics by A.R. Leach and V.J. Gillet, Springer Science and Business Media, 2003

References

- 1. Websites:https://www.ccdc.cam.ac.uk/Community/csd-community/freemercury/, http://www.chemspider.com/StructureSearch.aspx, https://www.emolecules.com/
- 2. Coordination Chemistry by R. Gopalan and V. Ramalingam, Vikas Publishing House Pvt. Ltd., 2001.
- 3. Solid state chemistry and its applications, A.R. West, Student Ed., Wiley India (P) Ltd., 2003.

Course			l	Program	n Outcome	es			Program Specific Outcomes						1		
Outco																	
mes	PO1	PO	PO3	PO	PO5	PO	PO 7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO	
		2		4		6	/									8	
CO 1	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K1
CO 2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K2
CO 3	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K3
CO 4	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K4
CO 5	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	K5
Wt.	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
Overall Mapping of the Course PO: 2.5 PSO: -																	

B.Sc. Course Articulation Table

ALLIED CHEMISTRY II (for Botany and Zoology students)

Course Co	ode									
Credits		3								
Hours / Cy	vcle	4								
Categor	У	Part III	Allied		Th	neory				
Semeste	r	IV								
Year of Implem	entation	From the acad	emic year 2023-34 onwar	ds						
Course Obje	ctives	 To get insight of basic inorgan To acquire interdisciplinary 	 To get insight of the fundamental concepts and principles of basic inorganic, organic and physical chemistry. To acquire the basic knowledge in chemistry for interdisciplinary research 							
CO#		Course Out	P Add	PSO ressed	Bloom's Taxono my Levels (K1 to K5)					
On completing the o	course success	sfully, the stude	nt will be able to							
CO1	Recall (i) the ii) definition terpenoids, w fundamental enzymes an elementary i molecules an	basics of coordin n, sources, clas vitamins enzyme terminologies d parameters f deas on electror d photochemistry	ation and nano chemistry, ssification of alkaloids, s and antibiotics (iii)The of chemical kinetics, for water analysis (iv) nic transitions in organic	P: P:	SO1 SO2	K1				
CO2	Understand (and structure SEM (iii) typ size effect transitions an for water ana	molecules and photochemistryPSO1Understand (i) the theories of coordination chemistry and structure of natural products (ii) instrumentation of SEM (iii) types of nano materials and the importance of size effect properties (iv)the basics of electronic transitions and photochemistry (v) various parametersPSO2								
CO3	Apply (i) the CFT in d orbital splitting and chelate stability factors (ii) vitamin deficiency symptoms and antimicrobial resistance to understand issues related to health (iii) enzyme inhibition phenomenon to infer enzyme kinetics (iii)Jablonski diagram to interpret photo physical processesPSO3K3									
CO4	Compare and compounds, enzymes, ki photo physic	d contrast proper nanomaterials, inetic behaviour al processes at a	ties/types of coordination natural products/drugs, c, electronic transitions, basic level.	P: P:	SO3 SO4	K4				

CO5	Synthesise the knowledge gained through study of this	PSO5	K5
	course to have a comprehensive understanding of the		
	fundamentals of chemistry.		

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
I	1.1 Theories of coordination chemistry: IUPAC nomenclature; Pauling theory (VBT); Elementary ideas of Crystal Field Theory and its application in splitting of d-orbitals in octahedral field.	12	CO1- CO5	K1 – K5
	1.2 Isomerism: Structural isomerism – Ionization, linkage, ligand and hydrate isomerism; Optical and geometrical isomerism of four coordinated complexes.			
	1.3 Chelates: Definition and examples; Factors affecting stability of chelates.			
	1.4 Bio-coordination Chemistry: Structural features and functions of haemoglobin and chlorophyll			
Ш	2.1 Introduction to nano chemistry: Significance of nano-sized materials – Size effect properties; types of nanomaterials - Quantum dots (0 D), Nanorods and nanowires (1 D), Nanosheets (2 D) and nanocomposites – Definition only.	12	CO1- CO5	K1 – K5
	2.2 Green synthesis of Au and Ag nanoparticles and their bio-medical applications.			
	2.3 Scanning Electron Microscopy– Principle and instrumentation (schematic representation)			
III	3.1 Alkaloids: Introduction, sources, chemical classification, structure and uses of atropine, quinine and morphine	12	CO1- CO5	K1 – K5
	3.2 Terpenoids: Introduction, sources, isoprene rule, chemical classification, structure and uses of citral, alpha-terpineol and limonene.			
	3.3 Vitamins: Definition, classification, water soluble vitamins (B1, B2, B3, B6, B12 and C) and fat soluble vitamins (A,D,E and K) – source, deficiency symptoms and daily requirements			
	3.4 Antibiotics:definition, examples and mode of action of penicillin; antimicrobial resistance			

IV	 4.1 Chemical Kinetics: Order and Molecularity; Zero, first and second order reactions (no derivations); Experimental methods for the determination of order of a reaction; Activation energy – Effect of temperature on reaction rates and Arrhenius equation (simple numerical problems). 4.2 Enzymes: Definition and classification; Factors affecting enzyme reactions; Lock and key model of enzyme activation; Competitive and non- competitive inhibition; Enzyme kinetics: Michaelis- Menton Kinetics (derivation not required) and significance of Km and Vmax; Lineweaver – Burk plot: Determination of Km and Vmax and its application to competitive and non-competitive inhibition. 	12	CO1- CO5	K1 – K5
V	 5.1 Electronic transitions in organic molecules: Chromophore, auxochrome, bathochromic shift, hypsochromic shift, hyperchromic shift and hypochromic shift; Different types of electronic transitions and their significance in structural elucidation (concepts only). 5.2 Photochemistry:Grothus - Draper law, Stark – Einstein law and Beer – Lambert law(statement only); Quantum yield; Photophysical processes (Jablonski diagram); Bioluminescence; Biochemical fluorophores: Classification and examples; Fluorescence probes – calcium ion probes and green fluorescence proteins (GFP) (elementary ideas only). 5.3 Aqua Chemistry: Parameters in water analysis – Colour, odour, pH, TDS, turbidity and conductivity; Dissolved oxygen, Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) 	12	CO1- CO5	K1 – K5
Te 1. 2. 3. 4. 5. 6. 7. 8.	 Extbooks Coordination Chemistry by R. Gopalan and V. Rama HousePvt. Ltd., 2001. Bioinorganic chemistry by K. Hussain Reddy, New A Organic chemistry of Natural Products, Volume I by by M.Arora, Himalaya Publishing House, 2010. Organic chemistry of Natural Products, Volume II by by M.Arora, Himalaya Publishing House, 2011. Textbook of pharmacognosy and phytochemistry by Elsevier,2010. Principles of nanoscience and nanotechnology, M.A AlphaScience International, 2010. Principles of Fluorescence Spectroscopy by Joseph F Springer,2006. Principles of physical chemistry by B.R. Puri, L.R. VishalPublishing House Pvt. Ltd., 2008. 	Ilingam, Vik Age Internati Gurdeep R Gurdeep R B.N. Shah a A. Shah and R. Lakowicz, Sharma and	as Publis onal Pub Chatwa . Chatwa and A.K. Tokeer 3 rd Editi d M.S. P	hing lication, 2007. l, Edited l, Edited Seth, Ahmad, on, athania,

. References

- Biochemistry by L. Stryer, 2nd edition, W.H. Freeman & Co., 1981.
 Fundamental concepts of Applied Chemistry by Jayashree Gosh, S. Chand, 2006.
 Bioinorganic chemistry by Asim K Das, Books and Allied Ltd., 2013.

							B.Sc. 0	Course A	rticula	tion Ma	trix					
Course			Progr	am Ou	ıtcome	s		Program Specific Outcomes							Cognitive	
Outcom	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Level
es	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	
CO 1	-	3	-	-	-	-	-	2	3	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	2	3	-	-	-	-	-	-	K2
CO 3	-	2	3	-	-	-	-	-	-	2	3	-	-	-	-	K3
CO 4	-	1	3	-	-	-	-	-	-	3	3	-	-	-	-	K4
CO 5	-	-	-	-	3	-	-	-	-	-	-	3	-	-	-	K5
Wt.	-	2.2	3	-	3	-	-	2	3	2.5	3	3	-	-	-	
Avg.		5														
									0	verall N	/lapping	of the C	Course	PO: 2.7	75	
														PSO: 2	2.7	

COORDINATION CHEMISTRY

Course (Code									
Credi	ts	4								
Hours / G	Cycle	3								
Catego	ory	Part IIICoreTheory								
Semes	ter	V								
Year of		From 2023-24 onwards								
Implementation										
Course Objectives		To explore the fundamental concepts of coordination complexes, its theories and applications. To Understand organometallic chemistry concepts and to recognize the role of coordination complexes in biology								
CO#		Cou	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)						
On completi	ng the cou	irse successful	ly, the student will be able to							
CO1	Recall (i IUPAC 1	i) the theories nomenclature r	of coordination compounds, ules, (iii) fundamental concepts	(ii) PSO1, s of PSO2	K1					

	coordination chemistry & organometallic chemistry and (iv)		
	introductory concepts in bio-inorganic chemistry		
CO2	Understand (i) the theories of coordination compounds, (ii)	PSO1,	K2
	IUPAC nomenclature rules, (iii) fundamental concepts of	PSO2	
	coordination chemistry & organometallic chemistry and (iv)		
	introductory concepts in bio-inorganic chemistry		
CO3	Apply (i) the theories of coordination compounds to	PSO3,	K3
	complexes, (ii) IUPAC nomenclature rules to coordination	PSO4	
	compounds, (iii) fundamental principles of coordination and		
	organometallic compounds to specific chemical reactions		
	and (iv) fundamental principles of bioinorganic chemistry to		
	specific metals in biology, haemoglobin and myoglobin		
CO4	Compare and comprehend (i) the theories of coordination	PSO3,	K4
	compounds, (ii) fundamental principles of coordination and	PSO4	
	organometallic compounds and (iii) fundamental principles		
	of bioinorganic chemistry to specific metals in biology,		
	haemoglobin and myoglobin		
CO5	Explain (i) the theories of coordination compounds, (ii)	PSO4,	K5
	fundamental principles of coordination and organometallic	PSO5	
	compounds and (iii) fundamental principles of bioinorganic		
	chemistry to specific metals in biology, haemoglobin and		
	myoglobin		

	SYLLABU	S		
UNIT	CONTENT	HOURS	Cos	BLOOM'S TAXONO MY LEVEL
Ι	 1.1 Coordination Chemistry: Early theories Bloomstrand-Jorgenson's chain theory and Werner's coordination theory; Types of ligands – chelates; Preparation of complexes; Detection of complex formation. Nomenclature – writing formulae and naming of mononuclear complexes. 1.2 Stability of complexes- factors affecting the stability – stepwise and overall formation constants-(determination not required) - effective atomic number rule - explanation and examples. 	9	CO1-CO5	K1 – K5
II	 2.1 Isomerism in complexes- Structural isomerism and stereoisomerism. 2.2 VB theory- hybridization and shapes of complexes-magnetic properties- spin only magnetic moment- discussion on outer and inner orbital complexes- octahedral, tetrahedral and square planar geometries 	9	CO1-CO5	K1 – K5

III 3.1 CF theory- degeneracy of d orbitals – 9 CO	1-CO5	K1 – K5
crystal field splitting by octahedral,		
tetrahedral and square planar arrangement		
of ligands- spectrochemical series-		
occupancy of electrons in orbitals-		
measurement of 10 Dq – factors affecting		
10 Dq values.		
3.2 Applications of CFT – effect of ligand		
field on the colour of complexes- Crystal		
Field Stabilization Energy – Jahn Teller		
distortion.		
IV 4.1 Organo-metallic chemistry: Metal 9 (CO1-CO5	K1 – K5
carbonyls, Metal – olefin and metal –		
cylcopentadienylcomplexes: Hapticity, 18		
electron rule (mono nuclear complexes		
only) and their synthesis		
4.2 Structure of metal carbonyls (back		
bonding and synergistic effect) and metal –		
olefincomplexes (DCD model)		
4.3 Metal carbonyls in first transition series		
– examples and structures		
V 5.1 Applications of coordination 9 CO	1-CO5	K1 – K5
complexes in analytical chemistry		
(qualitative, volumetric and gravimetric		
analysis)		
5.2 Bio-inorganic chemistry: Structure and		
biological functions of haemoglobin and		
myoglobin		
5.3 Metals in biology: Trace elements and		
micronutrients definition and examples:		
Discossedue to deficiency of Eq. Au. I. Zn		
Diseases due to deficiency of Fe, Au, I, Zh		
Salf stade		
Self study		
• Preparation methods for the complexes		
• Methods of detection of formation of complexes		
• Inert and Labile complexes		
• Fluxional isomerism		
• Coordination chemistry of Vanadium and Molybdenum on biolo	ogical system	S
Role of coordination chemistry in fluorescent probes for bioima	ging	
Textbooks		
1. Concise Inorganic Chemistry, J.D. Lee, Chapman and Hall, 1992.	T 7°1	
2. Concise Coordination Chemistry, R. Gopalan and V. Ramalingam	i, Vikas	
Publishing HousePrivate Limited, 2001	1	
3. Modern Aspects of Inorganic Chemistry, H.J. Emeleus and A.G. S	harpe, Unive	rsal
BOOKStall, 1992.	Hubser E A	Vaitan 1
4. Inorganic Unemistry: Principles of Structure and Reactivity, J.E.	Huneey, E.A	A. Keiter and
K.I. Ketter, Addison-Wiley, 1993.		
References		
1. Inorganic Chemistry, D.F. Shriver, P.W. Atkins, C.H. Longford	Oxford	
morgane chemicaly, 212 control, 1999 Hannis, Chili Dongford,	F	Page 65 of 104

University Press,1996.2. Advanced Inorganic Chemistry, F.A. Cotton and G. Wilkinson, Wiley Eastern Private Limited 1992

						B.Sc.	Course	e Articu	lation N	Aatrix							
Course Outcomes				Program	Outcomes	8					Pro	gram Speci	ific (Outcomes			K L
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PS O3	PSO4	P S O 5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	К 1
CO 2	-	3	-	-	-	-	-	-	2	3	-	-	-	-	-	-	К 2
CO 3	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	К 3
CO 4	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	К 4
CO 5	-	-	2	-	2	-	-	-	-	-	-	3	2	-	-	-	К 5
Wt. Avg.	-	3	2	-	2	-	-	-	2.5	3	3	3	2	-	-	-	
	•	•		•	•	•	•	•		•	Over	all Mappin	g of 1	the Course	PO: 2.3 PSO: 2	3 .70	

ORGANO NITROGEN CHEMISTRY

Course	Code										
Cred	lits	4									
Hours /	' Cycle	3									
Categ	gory	Part III	Core	Theo	ry						
Seme	ster	V									
Year	r of	From the academic year 2023-24 onwards									
Implementatio											
n	l										
Cou Objec	rse tives	 To gain insights on preparation and reactions of nitrogen containing org molecules such as nitro compounds, amines, diazo compounds, cyanides isocyanides etc. To understand the chemistry of heterocyclic compounds. To learn the elementary structural features of biomolecules such as amir acids, proteins and nucleic acids. 									
CO#		Course Outcome(s) T Addressed (1									
On com	pleting t	he course succes	sfully, the student will be able t	0							
CO1Recall the reactions/structures of Nitrogen containing organic compounds including biomoleculesPSO1, 2K1											

CO2	Understand the reactivity/structures of Nitrogen containing organic compounds including biomolecules	PSO1,2	K2
CO3	Apply fundamental concepts of chemistry to predict the reactivity/structural features of organo nitrogen compounds and biomolecules containing Nitrogen	PSO1,2,3	К3
CO4	 (i) Analyse the structural features and propose mechanism for simple reactions including common rearrangements involving organo nitrogen compounds (ii) Analyse the various factors responsible for higher order structures in proteins and nucleic acids 	PSO1,2,3,4, 5	K4
CO5	 (i) Evaluate the nature of interaction between the functional groups and judge the reaction pathways involving organo nitrogen compounds (ii) Evaluate the stability of higher order structures in proteins and nucleic acids. 	PSO1,2,3,4, 5,6	K5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 1.1 Nitroalkanes: preparation - vapour phase nitration of alkanes, via reaction between alkyl halides and metal nitrites; chemical properties reaction with Br2/NaOH, nitrous acid, condensation with aldehydes. 1.2 Cyano Compounds: Alkyl Cyanides – preparation – from alkyl halides, using RMgX; chemical properties – hydrolysis, addition of Grignard reagents and reduction. 1.3 Alkyl Isocyanides – from alkyl halides and Carbylamine reaction; chemical properties – hydrolysis and reduction. 1.4 Alkyl Isocyanates – synthesis from amines; chemical property–hydrolysis; Preparation of Ethyl Carbonate, Carbamic acid, Urethanes, Urea and Guanidine (reactions not required) 	9	CO1- CO5	K1 – K5
Π	2.1 Aromatic Nitrocompounds: Preparation – direct nitration and using acetyl nitrate; reduction of nitrobenzene under different conditions 2.2 Amino compounds: Basicity of amines, effects on amine basicity – substitution by alkyl groups, resonance effects and hybridization effect; preparation – reductive amination, reduction of nitro compounds and amides; chemical properties – reaction with alkyl halides and acyl halides, Hofmann elimination, Cope elimination, Hinsberg test for distinguishing 1°, 2° and 3° amines.	9	CO1- CO5	K1 – K5

	2.3 Diazo compounds: Diazotisation – mechanism – synthetic applications of aromatic diazonium salts; preparation and chemical properties of diazomethane.			
III	3.1 Molecular rearrangements: Hofmann, Lossen, Curtius, Benzidine, Beckmann and Wolff. 3.2 Heterocyclic compound: synthesis of pyrrole (using acetylene, using furan), thiophene (using acetylene, using n-butane), furan (oxidation and decarbonylation of furfural), indole (Fischer Indole synthesis), pyridine (using acetylene, using β - picoline), quinoline (Skraup synthesis), isoquinoline (Bischler-Napieralski synthesis), chemical properties of pyrrole, thiophene, furan, indole, pyridine, quinoline and isoquinoline.	9	CO1- CO5	K1 – K5
IV	 4.1 Amino acids: abbreviation, classification (based on their chemical nature and nutritional requirement); methods of preparation (Gabriel phthalimide, Strecker, amidomalonate), zwitter ionic form, isoelectric point; chemical properties. 4.2 Peptides: N-terminal amino acid analysis (Sanger, Dansyl chloride, Edman degradation and enzymatic method) C-terminal amino acid analysis (hydrozinolysis and enzymatic method), synthesis of dipeptides- liquid phase synthesis and Merrifield solid phase synthesis. 	9	CO1- CO5	K1 – K5
V	5.1 Proteins – classification (based on their chemical composition and biological functions), primary, secondary, tertiary and quaternary structures; denaturation, isoelectric point and electrophoresis 5.2 Nucleic acids: Nucleosides and Nucleotides; DNA structure-covalent structure, WatsonCrick double helical model; replication of DNA, types of RNA, Genetic code, transcription and translation (elementary level concepts).	9	CO1- CO5	K1 – K5
Textboo 1. Advar 2. Organ 3. Organ Limited, Reference	ks nced organic chemistry, B.S. Bahl and Arun Bahl, 2nd E ic chemistry, 5th edition, John E. McMurry, 7th Edition, ic chemistry, Janice Gorzynski Smith, 2nd Edition, Tata 2008	dition, S. Cl Asian Bool McGraw H	nand pub cs Private ill Educa	lications, 2010 e Limited, 2012 tion Private
1. Organi 2. Organi	ic chemistry, Leroy G. Wade, 8th Edition, Pearson Educ ic Chemistry, Morrison R.T. & R.N. Boyd, Prentice Hall	ation Inc., 2 l of India Pv	019. t.Ltd., N	ew Delhi. 1995.
Online F	Resources https://www.sciencedirect.com/topics/chemistry/organon ttps://chem_libretexts_org/Bookshelves/Organic_Chemis	itrogen-com	pound	of Organic Ch

2. <u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Basic_Principles_of_Organic_Chemistry_(Roberts_and_Caserio)/23%3A_Organonitrogen_Compounds_I_-_Amines</u>

Course Outcone s	Programme Outcomes								Progra	Programme Specific Outcomes							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	
CO1		3							3	3						-	K1
CO2		3							3	3						-	K2
CO3		3							3	3	3					-	K3
CO4		3	2						3	3	3	2	3			-	K4
CO5				3	3								3	3		-	K5
Wt. Avg.		3	2	3	3				3	3	3	2	3	3		-	-

CHEMICAL KINETICS AND SURFACE CHEMISTRY

Course Code									
Credits	4								
Hours / Cycle	3								
Category	Part	Core	Theory						
Semester		· · · ·	-						
Year of Implementation	From t	he academic year 2023-24 onward	ds						
Course Objectives	 To learn the theories which determine the rate of chemical reactions To understand concepts on rate of the reaction To interpret the effect of catalyst in a reaction and its types To differentiate photo physical process and chemical process To explain the various adsorption isotherms and process 								
CO #		Course Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
(On comp	leting the course successfully, the	student w	ill be able to					
CO 1	CO1Have a basic understanding of the concepts and terminology used in chemical kinetics and surfacePSO1K1								
	chemist	ry							

CO 3	Apply rate equations to decipher problems involving	PSO2,	K3
	rate laws, theories of reaction rates, catalysis,	PSO3, PSO4	
	photochemistry and adsorption.		
CO 4	Analyse and interpret chemical kinetic behaviour of	PSO3,	K4
	different systems.	PSO4, PSO5	
CO 5	Critically evaluate the various kinetic models and	PSO3,	K5
	predict the kinetic behaviour of simple systems.	PSO4, PSO5	
CO 4 CO 5	Analyse and interpret chemical kinetic behaviour of different systems. Critically evaluate the various kinetic models and predict the kinetic behaviour of simple systems.	PSO3, PSO4, PSO5 PSO3, PSO4, PSO5	K4 K5

	SYLLABUS									
UNIT	CONTENT	HOURS	COs	BLOOM'S						
				LEVEL						
I	1.1 Rate of a reaction - Rate equation- Rate constant, Rate determining step, Order and Molecularity - Methods for the determination of order, Factors influencing the rate of the reaction.	9	CO1- CO5	K1 – K5						
	1.2 Derivation of kinetic equation for zero, first and second order, parallel, consecutive and opposing reactions.(Problems on rate and order of the reaction).1.3 Arrhenius law- activation energy. (Problems on Arrhenius law and Activation Energy)									
II	2.1 Collision theory of bimolecular reaction, collision cross section, collision number.	9	C01-	K1 – K5						
	2.2 ARRT- qualitative treatment of equilibrium hypothesis- rate equation- transmission coefficient; Thermodynamic formulation of reaction rate, entropy, enthalpy and volume of activation.		C05							
	2.3 Unimolecular reactions - steady state treatment - Lindemann hypothesis.									
	2.4 Effect of solvent and ionic strength on reaction rates (Problems on Ionic strength).									
III	3.1 Homogeneous and Heterogeneous Catalysis: definition –examples and differences - General	9	CO1-	K1 – K5						
	3.2 Enzyme catalysis: Effect of temperature, pH, Concentration (Michaelis - Menten kinetics) on enzyme catalysed reactions		05							
IV	4.1 Laws of photochemistry: Beer-Lamberts law, Grotthus-Drapper law, Einstein's law of photochemical equivalence, quantum yield.(Problems on Beer Lamberts law)	9	CO1- CO5	K1 – K5						
	4.2 Kinetics of photochemical reactions of CH3CHO and H2 - Cl2.									

	4.3 Photophysical processes: Fluorescence and Phosphorescence; Photosensitisation;								
V	5.1Adsorption: Physisorption and Chemisorption -	9	CO1-	K1 – K5					
	Applications of adsorption – Freundlich Adsorption								
	isotherms -Desorption activation energy - Langmuir		CO5						
	Adsorption isotherm; BET equation (no derivation)								
	and its use in surface area determination; Adsorption								
	from solutionGibbs Adsorption Isotherm.								
	5.2 Colloids-types, stability and electrical double								
	layer, electrophoresis and electro-osmosis -								
	association colloids (micelles) and Critical Micelle								
D 11	Concentration.								
Prescrib	ed Books/Textbooks (1-5 books)	1007							
I. Chem	ical Kinetics, K.J.Laidler, 3rd Edition, Pearson Publicat	10n,1987.	TT 7'1 T 7	CUL 2012					
2. Funda	amentals of Enzyme KineticsbyAthel Cornish-Bowden,	4th Edition,	Wiley-V	CH, 2012					
3. Princi	iples of Physical Chemistry, B.R.Puri,L.R.Sharma, Mad	lhan S.,Patha	ana, 4/th	Edition, Vishal					
Publishii	19 C0,2015	Janaga Duhli	ahin a Ha	2001					
4. An In 5. Eurodo	troduction to Physical Chemistry, D.K. Chakrabariny, F	d Moomillo	sning Ho	buse, 2001.					
J. Fullua	mentals of Filly. Chemistry, Maton and Lando, mustrated	u, maciiiia	11, 1974.						
Referen	ces(3-5)								
1.Elemer	nts of Physical Chemistry, Glasstone and Lewis, 2 nded	ition,VanNo	strand ed	lition,1962,					
2. Eleme	ents of Physical Chemistry, Peter Atkins, Julio de F	Paula. 4th e	dition. V	V.H. Freeman &					
Company	v 2005								
3. Physic	cal Chemistry, Ira N. Levine,5th edition, McGraw-Hill,2	2001							
Suggeste	ed Reading								
1. C	1. Chemical Kinetics - Laidler Published By –Pearson Education India. 1987 ISBN -								
8131709728, 9788131709726.									
2. Introduction to Surface Chemistry and Catalysis, Gabor A. Somorjai, Yimin Li Edition 2,									
illustrated Publisher John Wiley & Sons, 2010									
3. /	3. A. Goel, Applied Colloid and Surface Chemistry Wiley InterScience online books Publisher								
Discovery Publishing House, 2006 ISBN 8183561500, 9788183561501.									
	-								
Web Rea	sources								
1 http://e	ngn inflihnet ac in/Home/ViewSubject?catid=13G8Vou	hmrFfuhs6r	kivTA==						

- 1.http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA== 2. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA== 3. http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA==

Course Outcomes	Program Outcomes Program Specific Outcomes								KL								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	2	2	-	-	-	-	-	-	K2
CO 3	-	3	3	-	-	-	-	-	-	2	2	3	-	-	-	-	K3
CO 4	-	3	3	-	2	-	-	-	-	-	3	3	3	-	-	-	K4
CO 5	-	3	3	-	3	-	-	-	-	-	3	3	3	-	-	-	K5
Wt. Avg.	-	3	3	-	2.5	-	-	-	2.5	2	2.7	3	3	-	-	-	-
Overall Mapping of the Course										PO: 2.8 PSO: 2.4							

BASIC ANALYTICAL TECHNIQUES IN CHEMISTRY (75 hours)

Cours	e Code								
Cre	dits	5							
Hours	/ Cycle	5							
Cate	gory	Part III	Core	Theo	Theory				
Sem	ester	V	· · · · · · · · · · · · · · · · · · ·		*				
Yea	r of	From 2023-2	4 onwards						
Implem	entation								
Cor Obje	ırse ctives	 To acquire fundamental ideas on molecular polarization (dipole) and magnetic nature of compounds. To extend the understanding of molecular polarization and magnetic nature to principle of various spectroscopic techniques. To apply various spectroscopic techniques to elucidate the structure of simple molecular compounds. To learn the fundamentals of diffraction studies, chromatographic techniques and mass spectrometry. 							
CO#		Cou	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)					
On com	pleting the	e course succes	sfully, the student will be able	to					
CO1	Recall (i) magnetic principle and ESR chromato	Recall (i) the fundamental principles of dipole moment and magnetic property of the materials (ii) the fundamental principles of Absorption spectroscopic techniques, NMR and ESR spectroscopy, Mass spectrometry, Diffraction and abrometographic techniques & thermal analysisPSO1, PSO2K1							
CO2	Understand (i) the principles of dipole moment and PSO1, K2 magnetic property of the materials (ii) the principles of PSO2, Absorption spectroscopic techniques, NMR and ESR PSO3 spectroscopy, Mass spectrometry, Diffraction and chromatographic techniques & thermal analysis								
CO3	Apply (i) the principles of dipole moment and magnetic property of the materials to recognize their properties and behaviours, (ii) the principles of Absorption spectroscopic techniques, NMR and ESR spectroscopy and Mass spectrometry to elucidate the structure of a molecule, (iii) the principles of diffraction techniques to derive the structure of crystalline solids and (iv) chromatographic principles for separation of mixture of compounds and (v) thermal analysis to predict the behaviour of compounds at different temperaturesPSO2, PSO3, PSO4K3								
CO4	(i) Comp (ii) Anal spectrosc	are the principl yze the structu opic technique	es of various analytical techniqu re of the compound based on s	es PSO2, the PSO3, PSO4	K4				
CO5	Examine the structure and/property of a compound based on	PSO2,	K5						
-----	---	-------	----						
	the information from spectroscopic and analytical methods	PSO4							

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
1	Unit I: Introduction to dipole moment and magnetic nature of compounds1.1 Dipole moment – molecular polarization – measurement of dipole moment– significance of dipole moment as a vector property.1.2 Dielectric constant – measurement of dielectric constant.1.3 Magnetic properties – diamagnetism, paramagnetism, and ferro-magnetism1.4 Temperature – dependent and independent paramagnetism.1.5 Magnetic susceptibility determination: Use of 	15 hours	CO 1 – CO 5	K1 – K5
2	 Unit II: Absorption spectroscopic techniques 2.1 Electromagnetic spectrum – Different regions of the electromagnetic spectrum 2.2 Ultraviolet – Visble Spectroscopy: Electronic transitions - Possible transitions in organic molecules, Beer–Lambert law; Chromophore; Substituent effects; Franck Condon principle, Prediction of λmax for alkene (Woodward-Fieser Rules); Instrumentation – Single beam and double beam - Source (deuterium lamp, tungsten filament), wavelength selector (filters, monochromators), sample container, radiation transducers (Photon transducers), read out devices (photomultiplier tubes, photovoltaic cells). 2.3 Infrared Spectroscopy: Dipole moment changes during rotation and vibration, Types of molecular vibrations, harmonic oscillator model; Instrumentation - Block diagram of an IR spectrometer – IR sources and sample handling. 2.4 Raman Spectroscopy: Theory of Raman spectroscopy, Mechanism of Raman and Rayleigh scattering; Instrumentation – Raman spectrometer (block diagram), sources (laser), sample handling (gas, solid and liquid). 	15 hours	CO 1 – CO 5	K1 – K5
3	<u>Unit III: NMR and ESR spectroscopy</u> 3.1 Magnetic properties of nuclei, Gyromagnetic ratio, resonance condition, principle of proton NMR – Larmor frequency - spin lattice and spin-spin relaxation (definitions only); NMR Instrumentation – block diagram; Reference compounds; sample preparation –solvents used in NMR; Difference	15 hours	CO 1 – CO 5	K1 – K5

	between CW-NMR and FT-NMR; chemical shift;			
	shielding and deshielding; factors affecting chemical			
	shift (Electronegativity, Anisotropy and hydrogen			
	bonding); interpretation of NMR Spectra of ethanol.			
	3.2 ESR spectroscopy: Principle & Instrumentation,			
	block diagram of ESR spectrometer - hyperfine			
	splitting - ESR spectra of methyl radical, benzene			
	anion and p-Nitrobenzoatedianion - Comparison			
	between NMR and ESR (basics only).			
	4 Unit IV: Diffraction and chromatographic techniques	15 hours	CO 1 –	K1 – K5
	4.1 X-ray diffraction: Principle – Bragg's law;		CO 5	
	Instrumentation: Powder diffraction method (rotating			
	crystal method)			
	4.2 Electron and Neutron diffraction: Principle:			
	Instrumentation: applications: merits and demerits:			
	Magnetic scattering: Comparison of X-ray and			
	Neutron diffraction techniques.			
	4.3 Chromatography: Definition, basic principles of			
	adsorption (column) and partition (thin layer)			
	chromatographic techniques; Retention factor (Rf			
	value) and its significance, sample preparation;			
	selection of solvents.			
	5 Unit V: Mass spectrometry and thermal analysis	15 hours	CO 1 –	K1 – K5
	5.1 Mass Spectrometry: Principle, Ionization methods		CO 5	
	- Electron impact (EI) method and chemical ionization			
	(CI) method – ratio of mass to charge (m/z) -			
	Instrumentation – description of sample injection			
	system, vaporization and ionization chamber, analyzer			
	tube, detector, amplifier, recorder, mass spectrum.			
	Applications			
	5.2 Thermogravimetric analysis – principles and			
	applications.			
	5.3 Differential thermal analysis and differential			
	scanning calorimetry – principles and applications.			
Sel	f study	•	•	
	• Introduction to anti-ferro, ferri magnetic materials.			
	• Estimation of metal ions and highly conjugated or	rganic com	punds usi	ng UV- Visible
	spectrophtometry.	0	•	0
	• Spin-spin splitting of NMR signals and applications of	NMR in s	oil organic	matter analysis,
	enzyme systems, magnetic resonance imaging (MRI)		•	
	• Application of ESR in soil chemistry, biochemical and bio	ological sys	tems	
	• Introduction to fragmentation pattern in mass spectrometr	y.		
Tex	tbooks			
1.	Instrumental Methods of Chemical Analysis, B.K. Sharma,	24 th Edition	n, Krishna I	Prakashan Media
	Pvt Ltd. Meerut, UP, India, 2005.			
2.	Elements of Analytical Chemistry, R.Gopalan, P.S.Subraman	nian and K.I	Rengarajan,	3 rd
	Edition, S. Chand & Sons, 2010			
3.	Fundamentals of molecular spectroscopy, C.N. Banwell and	E.M. McCa	sh, 4 th editi	on, McGraw Hill
	Eduction Pvt, NewDelhi, 2016		* ** * * *	
4.	Molecular structure and spectroscopy, G. Aruldhas, 5 th edition	n, Prentice-H	fall of India	a Pvt, New Delhi,
	2005.			

5. Principles of Physical Chemistry, B.R. Puri, L.R. Sharma, M.S. Pathania, 47th edition, Vishal Publishing Co, 2016

Reference

- 1. Organic Spectroscopy, Kemp W., Macmillan Publishing Co., Inc. New York, 1989.
- 2. Spectrometric Identification of Organic Compounds, New York, John Wiley & Sons, Inc. Silverstein, Morril Bassler, 1991.

Course Outcomes				Program	Outcom	ies			Program Specific Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	2	2	3	-	-	-	-	-	K2
CO 3	-	3	2	-	-	-	-	-	-	2	3	3	-	-	-	-	K3
CO 4	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	K4
CO 5	-	3	2	-	-	-	-	-	-	2	-	3	-	-	-	-	K5
Wt. Avg.	-	3	2	-	-	-	-	-	2.5	2.25	3	3	-	-	-	-	
	Overall Mapping of the Course													PO: 2.8 PSO: 2.	8 69		

PRACTICAL III – ORGANIC ANALYSIS, GRAVIMETRY& PREPARATION

Course															
Code															
Credits	6														
Hours / Cycle	6														
Category	Part III	Core	Pra	ctical											
Semester	V														
Year of	From the ac	ademic year 2023-24 onwards													
Implementa tion															
Course Objecti ves	 To Systematically compound and to sy To synthesis an or Apply the principli gravimetric analysis 	To Systematically analyze, identify the functional group/s in a given organic ompound and to synthesize a suitable solid derivative To synthesis an organic compound and recrystallize the product Apply the principles of precipitation and develop laboratory skill associated with ravimetric analysis Durse Outcome(s) Bloom's Taxonomy Levels (K1 to													
CO#	Course Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)											
	On completing t	he course successfully, the stu	dent will be able t	to											
CO1	Recall the general tabu and gravimetric analysis Use the methodology to	lation of qualitative organic analysis	PSO1, PSO2	K1											
CO2	Compile the report o organic preparation a organized way	f the qualitative organic analysis nd gravimetric analysis in an	s, PSO1, PSO2	K2											
CO3	Tabulate/present the systematic manner re analysis, organic pre	experimental observations in a lated to organic qualitative paration and gravimetric analysi	PSO2, PSO3, is PSO4	K3											
CO4	In regular classes and i) Interpret the exper- the functional group/ compound ii) prepare a well cry iii) Calculate the amo- gravimetric analysis	I ICA mental observations to determin s present in the organic stallized organic compound ount of anions/cations through	ne PSO2, PSO4	K4											
CO5	In ESE i) Interpret the exper- the functional group/ compound ii) prepare a well cry iii) Calculate the amo gravimetric analysis	mental observations to determin s present in the organic stallized organic compound ount of anions/cations through	ne PSO2, PSO3, PSO4	K5											

CONTENT

1. Organic Qualitative Analysis

- 1.1. Characterisation of organic compounds by their functional groups and confirmation by preparation of derivatives.
- 1.2. Separation of simple organic mixtures benzoic acid and toluene or glucose and benzoic acid.

2. Gravimetric analysis (use of sintered crucible is recommended wherever possible)

- 2.1 Determination of the number of water molecules present in a hydrated salt.
- 2.2 Estimations of lead as Lead chromates or Lead sulphate
- 2.3 Estimations of Barium as Barium chromates or Barium sulphate
- 2.4 Estimations of calcium as calcium oxalate monohydrate.
- 2.5 Estimation of copper as cuprous thiocyanate
- 2.6 Estimation of zinc as Zinc oxinate or Auminium as Aluminium oxinate.
- 2.7 Analysis of limestone and brass.

3. Preparations

- **3.1** Preparation of Five inorganic compounds and determination of boiling and melting points(micro method).
- **3.2** Preparation of six organic compounds. Determination of boiling and melting points (micro method).

CO	PO1	PO2	PO3	PO4	PO	PO	PO7	PO8	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	KL
						6			1	2	3	4	5	6	7	8	
CO1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO2	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K2
CO3	-	3	2	-	-	-	-	-	-	3	2	2	-	-	-	-	K3
CO4	-	3	2	-	-	-	-	-	-	3	-	3	-	-	-	-	K4
CO5	-	3	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K5
Wt.	-	3	2.33	-	-	-	-	-	3	3	2.5	2.67	-	-	-	-	
Avg.																	
	Overall: PO: 2.665								Overall: PSO: 2.79								

B. Sc. Course Articulation Table

PRACTICAL IV: PHYSICAL CHEMISTRY

Course (Code												
Credits		4											
Hours /	Cycle	4											
Category	7	Part III	Core	Prac	ctical								
Semester	ſ	V and VI											
Year	of	From the acad	lemic year 2023-24 onwar	ds									
Impleme	entation												
Course		To determine	various physical parar	neters t	hrough experi	iments, thereby							
Objectiv	es	understanding	the concepts of physical che	emistry.	•								
CO#	Course	Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)								
On completing the course successfully, the student will be able to													
CO1	Reminis hands-or	ce the basic ph n experiments	sysical chemistry concepts	through	PSO1	K1							
CO2	Compile	e the report of th	e experiments in an organiz	ed way.	PSO5	K2							
CO3	Tabulate systema	e/Record the tic manner.	experimental observations	s in a	PSO3, PSO7	К3							
CO4	Determi and che Chemist Present laborato	ne various physi emical reactions ry the report with s ry classes.	ical parameters for different / Verify certain laws of systematic procedure during	systems physical g regular	PSO3, PSO7	K4							
CO5	Measure of Physi present	e various physic cal Chemistry w the report with s	al parameters / Verify certa hile performing the experin ystematic procedure during	ain laws nent and ICA.	PSO3, PSO7	K5							

ONTENT

I. Experiments

- 1. Molecular weight determination by Rast's method.
- 2. Transition temperature of a salt hydrate.
- 3. Critical solution temperature of phenol-water system.
- 4. Effect of electrolytes on the CST of phenol-water system.
- 5. A study of two component system simple eutectic only.
- 6. Distribution coefficient of iodine between H2O and CCl4.
- 7. Determination of equilibrium constant for the reaction: KI + I2 == KI3
- 8. Determination of heat of neutralization.
- 9. Kinetics of acid catalyzed hydrolysis of an ester.
- 10. Kinetics of persulphate iodide reaction.
- 11. Determination of cell constant.
- 12. Verification of Onsager equation.
- 13. A study of weak electrolytes: Ostwald's dilution law.
- 14. Conductometric titration strong acid vs. strong base.
- 15. Determination of single electrode potential.
- 16. Determination of pH.

Textbooks

- 1. A. Findlay, J.A. Kitchener, Findlay's Practical Chemistry, 8th Edition, Prentice Hall Press, 1954.
- 2. B. Viswanathan and P.S. Raghavan, Practical Physical Chemistry, Viva Books, 2012.

References

1. R.C. Das and B. Behera, Experimental Physical Chemistry, McGraw-Hill Education, 1984.

Suggested Reading

1. Farrington Daniels, Experimental Physical Chemistry, 7th Edition, McGraw-Hill Inc., US, 1970.

Ľ	5.5 C.	Cour	se Al	ucui	ation	Wall	IX										
Course			Р	rogram	Outcom	es					Prog	ram Spec	ific Outc	omes			KL
Outcomes				C													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	-	-	-	3	-	-	-	-	-	-	-	2	-	-	-	K2
CO 3	-	3	-	-	3	-	-	-	-	-	2	-	-	-	2	-	K3
CO 4	-	3	-	-	3	-	-	-	-	-	3	-	-	-	3	-	K4
CO 5	-	3	-	-	3	-	-	-	-	-	3	-	-	-	3	-	K5
Wt. Avg.	-	3	-	-	3	-	-	-	3	-	2.7	-	2	-	3	-	
								-			Over	all Mappi	ing of the	Course	PO: 3.0)	
															PSO: 2	.67	

COMPUTER AIDED CHEMISTRY

Course	Code						
Cred	lits	3					
Hours /	Cycle	2					
Categ	gory	Part	t IV	Skill-Based		Theory	
Seme	ster	V				Ľ.	
Year Implemon	: of entatio	Fro	n the acad	emic year 2023-24 onwards			
Cou Objec	rse tives		iing computationa ank g	l chemistry			
CO#			(PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)	
On comj	pleting t	he co	urse succes	sfully, the student will be able	e to		
CO1	Recall program	the mmin	basics of c g.	hemistry and fundamentals o	f computer	PSO1	K1
CO2	Outline compu	e the tation	e essentia al chemistry	ls of programming, chemi y and drug design	informatics,	PSO2, PSO3, PSO6	K2
CO3	Apply for sim carry o resource	the couple ca ple ca out en ces to	oncept of co alculation, aergy minin screen drug	algorithms l structures, ious online	PSO2, PSO3, PSO5, PSO6	K3	
CO4	Analys energy and scr	e alg , exar reen fo	orithms, an nine chemi or potential	ructure and online tools r docking.	PSO2, PSO3, PSO5, PSO6	K4	

CO5	Evaluate algorithmic efficiency and design effective algorithms for	PSO2,	K5
	chemical structure manipulation and analysis.	PSO3,	
	Appraise the accuracy and limitations of chemical structure	PSO5,	
	drawing and visualization software.	PSO6	
	Determine the lowest energy conformation of molecules using		
	energy minimization techniques.		
	Critically assess the results of molecular docking simulations to		
	predict ligand-receptor interactions.		

	SYLLABUS													
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL										
Ι	Introduction to programming – basic concepts (Flow charts, Algorithm, Constants, Variable, Control Statements, loops and arrays in programming), MS-Word, MS-Excel and MSPowerPoint. Shortcut keys in MS office.	6	CO1- CO5	K1 – K5										
Π	Introduction to Cheminformatics - History of Cheminformatics - data storage, retrieval and presentation -Types of Databases - Cambridge structural database - different file formats (SMILES,.cif, .mol, .xyz, .pdb etc.,) - Online property calculators with examples	6	CO1- CO5	K1 – K5										
III	Introduction to Computational Chemistry - Coordinate Systems - Z-matrix (H2O and CH4) - Potential Energy Surfaces (Definitions - single point energy, local minima, global minima, saddle point and optimized geometry) - Energy minimization techniques - Molecular Graphics - Software programs used in Computational Chemistry (Gaussian, ORCA, ADF & GAMESS)	6	CO1- CO5	K1 – K5										
IV	Introduction to Online resources - online 2D and 3D chemical structure drawing - designing of molecules and demonstrating experiments – Protein data bank - Protein structure visualization tools – RasMol, PyMol, Molegro and Swiss PDB Viewer. (Definitions - PDB id, sequence, homology modeling, Resolution of a PDB, Co-factor)	6	CO1- CO5	K1 – K5										
V	Introduction to drug design - Structured-based drug design - Ligand based drug design – difference between drugs and inhibitors - Molecular Docking - Types (Rigid & flexible docking) - Online docking servers. (Definitions only - Pharmacophore, pharmacokinetics, lead molecule, search algorithm & scoring function)	6	CO1- CO5	K1 – K5										

Textbooks

- 1. Molecular Modelling: Principles And Applications, Andrew R. Leach, 2nd edition, Pearson Education; 2nd edition, 2009.
- 2. Andrew R. Leach & Valerie J. Gillet, An Introduction to Chemoinformatics, 1st Edition, Springer, 2004

References

1. Thomas Engel, Johann Gasteiger, Applied Chemoinformatics: Achievements and Future Opportunities, 1st Edition, Wiley Publication, 2018.

Suggested Reading

1. Jürgen Bajorath, Chemoinformatics for Drug Discovery, Wiley, 1st Edition, 20013.

Online Resources

- 1. <u>www.molinspiration.com</u>
- 2. <u>http://molcalc.org</u>
- 3. <u>www.rcsb.org</u>
- 4. http://www.swissdock.ch/
- 5. https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
- 6. <u>https://ochem.eu/home/show.do</u>
- 7. http://cheminf.cmbi.ru.nl/services.shtml
- 8. http://www.cheminfo.org/

	D.SC. (Jourse	Aluc	ulatio	II Iviai	11X											
Course			Pr	ogram (Dutcome	es					Progra	ım Specif	ic Outcon	mes			
Outcom																	
es	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PS	KL
																0	
																8	
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	KL1
CO 2	-	3	-	2	-	-	-	-	-	3	2	-	-	-	3	-	KL2
CO 3	-	3	-	3	3	-	-	-	-	3	2	-	2	-	3	-	KL3
CO 4	-	3	-	3	3	-	-	-	-	3	3	-	2	-	3	-	KL4
CO 5	-	3	-	3	3	-	-	-	-	3	3	-	3	-	3	-	KL5
Wt.	-	3	-	2.75	3	-	-	-	3	3	2.5	-	2.3	-	3	-	
Avg.																	
											Over	all Mappi	ng of the	Course	PO: 2.9	2	
	PSO: 2.76																

Course	e Code							
Cre	dits	3						
Hours	/ Cycle	4						
Cate	gory	Part IV	General Elective	Theo	ory			
Sem	ester	VI						
Yea	r of	From the aca	demic year 2023-24 onwards					
Implem	entation							
Cou Objec	ırse ctives	To impart a sense of responsibility about environment and a personal commitment to protect and preserve the environment To create awareness among students about the pollutants and their adverse impact on environment. To promote the collaboration with other organizations and associations to solve local environmental problems To develop pro-environmental attitudes among students to be effective advocate of environment						
CO#		Cou	rse Outcome(s)	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)			
On completing the course successfully, the student will be able to								
CO1	Recall (i) of polluta of polluta	the structure of the st	of the atmosphere (ii) different t tion. iii) definition of quantification of pollution	pypes PSO1, 2 ation	K1			
CO2	Understa for vario effect of	nd (i) the struct us pollution and pollution on the	ture of the atmosphere(ii) the re nd their pollutants (ii) the adv e environment	ason PSO1,2 verse	K2			
CO3	Apply the and quan level.	e fundamental of tification of pol	concepts related to various polluli to the polluli	ution PSO1,2,3	К3			
CO4	Analyze (i) the various reasons and sources of various pollutants responsible for different types of pollutions. (ii)PSO1,2,3,4, 5K4the remediation techniques for the minimization of pollution55							
C05	(i) Assess Evaluate pollution environm	s the root cause the quantificat level and to m nent.	es for various types of pollution ion of pollutants for measuring inimize it and save the	s (ii) PSO1,2,3,4, the 5	К5			

ENVIRONMENTAL CHEMISTRY

UNIT	CONTENT	HOURS	COs	BLOOM'S
				TAXONOMY
		10	<u> </u>	LEVEL
I	Atmospheric pollution: Structure of the atmosphere -	12	COI-	KI - K5
	sources of air pollution - primary pollutants - CO,		COS	
	nydrocarbons, particulate matter, SO2, NO,			
	destruction CECs. Green house offect, global			
	warming			
	warning.			
		10	001	
11	Water Pollution: Quantification of pollutants-BOD,	12	CO1-	KI - KS
	COD, DO in natural waters wastewater treatment -		CO5	
	nitrification_denitrification - thermal pollution		000	
	intrification demutification inclinat polititon.			
	Fertilizer: N and P fertilizers used in crop	12	<u>CO1-</u>	K1 K5
111	production-nitrate pollution and phosphorus pollution	12	001-	$\mathbf{K} \mathbf{I} = \mathbf{K} \mathbf{J}$
	of water-Futophication		CO5	
	of water Europhication			
	Pesticides-Pest control using chemicals-pollution due			
	to organo chlorine-organo phosphorus,			
	insecticides, herbicides, PCB, PAH-Biomagnification			
IV	Heavy metal pollution: Toxicity-bioaccumulation-	12	CO1-	K1 - K5
	Mercury-methyl formation-toxic effect of lead in the		CO5	
	environment-lead additives of petrol; cadmium,			
	chromium and Arsenic			
V	Noise Pollution: measurement of noise level. noise	12	CO1-	K1 – K5
	pollution hazards and control			
			CO5	
	Pollution due to radioactive waste-health and			
	environment effect-management of nuclear waste			
Self-stud	ly	l	<u> </u>	l
• Findi	ng out how long it takes for bioplastic to degrade			
• Findi	ng out how much microplastics in waters			
• Biop	astic making, natural dye extraction			
Biob	ased soap, toothpaste etc., making			
Techr	iques for removal of heavy metals.			

Books: 1. Environmental Chemistry A.K.De 3rd Edition

References:

1. Environmental Chemistry, P.S.Sindu, 2nd Edition, 2010, New Age International Pvt Ltd.

Web resources

- 1. https://moef.gov.in/en
- 2. https://www.undp.org
- 3. https://www.fauna-flora.org
- 4. https://www.worldwildlife.org
- 5. <u>https://www.unep.org</u>
- 6. https://www.oecd.org

Course			Pr	ogram	Outcom	nes					Prog	ram Spec	ific Outc	omes			KL
Outcomes																	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	2	3	3	-	-	-	-	-	K2
CO 3	-	3	3	-	-	-	-	-	3	3	3		-	-	-	-	K3
CO 4	-	3	3	-	-	-	-	-	3	3	3	3	2	-	-	-	K4
CO 5	-	3	2	-	2	-	-	-	3	3	3	3	2	-	-	-	K5
Wt. Avg.	-	3	2.66		2				2.8	3	3	3	2	-	-	-	
											Overa	ll Mappi	ng of the	Course	PO: 2.5	55	
															PSO: 2	.76	

CHEMISTRY OF METALS AND NUCLEAR CHEMISTRY

Course	e Code							
Cre	dits	5						
Hours	/ Cycle	5						
Cate	gory	Part III	Core	Theo	ory			
Sem	ester	VI						
Yea	r of	From 2023-2	4 onwards					
Implem	entation							
Cou Obje	ırse ctives	 To learn the principles of metallurgy and applying them to the extraction of few metals To understand the trend and anomalies in the characteristics of d-block elements To gain knowledge on the inner transition elements To explore the nuclear chemistry by knowing the nuclear processes, theories stability and isotopes 						
CO#		Cou	PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comp	oleting the	e course succes	sfully, the student will be able	e to				
CO1	Recall (i) fundaments) the fundamen ntal chemistry and (ii) fundan	tal principles of metallurgy, (ii of transition and inner trans mental concepts of nuclear chem) the PSO1, ition PSO2 istry	K1			
CO2	Understa the funda elements	nd (i) the fundation imental chemis and (ii) fundation	imental principles of metallurgy try of transition and inner trans nental concepts of nuclear chem	v, (ii) PSO1, ition PSO2 iistry	K2			
CO3	(i) Apply the principles of metallurgy to the extraction of metals from their ores, (ii) Apply the fundamental concepts of transition and inner transition elements and compounds to understand their reactivity, (iii) Apply the fundamental concepts of nuclear chemistry to recognize the structure of nucleus and (iv) Apply the fundamental concepts of nuclear chemistry to recognize the properties and reactivity of nucleusPSO3, PSO4K3							
CO4	(i) Comp the extra periodic a transition reactivity	i) Compare the various metallurgical process involved in the extraction of a metal from its ore, (ii) compare the periodic and chemical properties among transition and inner ransition elements and (iii) compare the properties and eactivity of the nucleus						
CO5	Justify (i) inner trar) the extraction isition element	and reactivities of the transition s based on chemical principles	and PSO4, PSO5	К5			

(ii) the properties and application of nucleus based on the	
principles of nuclear chemistry	

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 1. General principles of metallurgy: Ores and minerals; Concentration of the ores; Extraction of the metals – Ellingham's diagram & Electrochemical series; Different types of chemical processes involved in extraction of metals; Purification of metals. 1.2 Extraction and uses of the following metals - Al (Alumino thermite process), Na and Ca (Dow's process), Ti (Kroll process), Fe (Blast furnace and Bessemer Converter) V (extraction from vanadinite and carnotite), Pb (Extraction from Galena) and noble metals (Pt and Pd). 	15	CO1- CO5	K1 – K5
Π	 2.1 General characteristics of d-block elements: metallic character and reactivity, variable oxidation states, standard electrode potentials and reducing behaviour; colour and magnetic properties, catalytic properties & tendency to form complexes. 2.2. Important compounds of transition metals: Potassium permanganate, potassium dichromate, osmium tetraoxide, titanium dioxide, cis-platin, vaska's complex, ruthenium bipyridyl complex – synthesis and reactions. 2.3 Polyacids: Iso and hetero polyacids of Cr, Mo and W – Formation and structure. 	15	CO1- CO5	K1 – K5
III	 3.1Chemistry of inner transition elements; position in the periodic table - occurrence, oxidation states of lanthanides and lanthanide contraction & its consequences; Colour, spectral and magnetic properties of lanthanides compounds. 3.2 Extraction of mixture of lanthanides from monazite sand; Separation of lanthanides by the following methods: Solvent extraction and ion exchange. 3.3 Actinides: Occurrence, position in the periodic table, comparison between lanthanides and actinides, Extraction of Th and U. 	15	CO1- CO5	K1 – K5
IV	4.1 Fundamental particles: quarks, leptons and force carriers – Hadron (definition and classification).	15	CO1- CO5	K1 – K5

	4.2 Natural radioactivity: Laws of radioactive disintegration, radioactive equilibrium, radioactive series.							
	4.3Nuclear properties: theories of nuclear structure (shell model and liquid drop model);n/p ratio: binding energy, mass defect and packing fraction, nuclear stability.							
	4.4 Isotopes: Principles and methods of separation of isotopes; uses in analytical chemistry, reaction mechanisms, industries and medicine; radiocarbon dating; radiation induced reactions; nuclear isomerism; neutron activation analysis.							
V	5.1 Artificial radioactivity: Methods of nuclear	15	CO1-	K1 – K5				
	transmutation – Bohr's theory, types of transmutation with projectiles, orbital electron capture		CO5					
	5.2 Fission theory: Types of nuclear reactors,		005					
	construction and working of nuclear reactors, particle							
	accelarators – synchrotron and betatron.							
	5.3 Fusion: Principle and examples; Stellar energy.							
	5.4 Environmental and ethical aspects of nuclear							
	technology, nuclear waste management.							
Self-stud								
• Typ	triade and Distinum group elements their position in the	moniodioto	hla					
• IIOII • Dror	triads and Platinum group elements – their position in the	e periodic ta	lole					
	Cerent units of radioactivity							
• Diff • Safe	handing radio-isotopes. A brief history of nuclear power	nlants accid	lents					
• Ato	mic energy programmes in India applications of nuclear c	plants accid	electrici	ty generation				
medic	ine, industry, agriculture	mennisery m	ciccuici	ty generation,				
Textbool	<s (\$</s 							
1. Princip Distrib	1. Principles of Inorganic Chemistry, Puri B.R, Sharma L.R & Kalia K.C., Milestone Publishers and Distributors. New Delhi, 2008.							
2. Concis	2. Concise Inorganic Chemistry, Lee, J.D., 5th Edition, New Delhi, Oxford University Press, 2008.							
3. Eleme	nts of Nuclear chemistry by Arnikar, New Age Publication	n,1995.						
Reference	es							
1. Wahid U Malik, G.D.Tuli, R.D.Madan Selected Topics in Inorganic Chemistry. New Delhi. S Chand								
\mathcal{X} Co. 20	09. cad Inorganic Chamistry, Wiley Indian Byt. I td. Cotton E	A and GV	Villzinger	2008				
∠. Auvan	ced morganic Chemistry, whey indian Pvt. Ltd. Cotton F	.A. alla G.V	V HKINSOI	1 2008.				

Course Outcomes		Program Outcomes							Program Specific Outcomes						KL		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	2	3	-	-	-	-	-	-	K2
CO 3	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	K3
CO 4	-	3	2	-	-	-	-	-	-	-	3	3	-	-	-	-	K4
CO 5	-	-	2	-	2	-	-	-	-	-	-	3	2	-	-	-	K5
Wt. Avg.	-	3	2	-	2	-	-	-	2.5	3	3	3	2	-	-	-	
Overall Mapping of the Course											PO: 2.3 PSO: 2	33 .70					

NATURAL PRODUCTS, PHARMACEUTICALS AND SPECTROSCOPY

Course	e Code									
Cre	dits	5								
Hours	/ Cycle	5								
Cate	gory	Part III	Core		Theo	ry				
Sem	ester	VI								
Yea	r of	From the academic year 2023-24 onwards								
Implem	entation									
 To learn the classification and structural features of natural products clinical uses of drugs, the use of spectral data in structure identification To utilize the knowledge of various reactions in the structural elucidation natural products To utilize the knowledge of various spectral techniques in identification structure of organic compounds 										
CO#		Cou	rse Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comp	oleting the	e course succes	sfully, the student will be able	e to						
CO1	Recall i) definition, classification, isolation, structure and reactions of alkaloids, terpenoids, carbohydrates, vitamins and drugs ii) basic concepts and spectral data of FTIR, NMR and MassPSO1 PSO2					K1				
CO2	Understa features of pharmace NMR and	nd (i) the fur of natural prod euticals (iii) the d Mass	damental reactions and struc ucts (ii) the clinical uses of ce concepts and spectral data of F	ctural ertain FTIR,	PSO2 PSO3	K2				

CO3	Apply i) the fundamental reactions in the structural elucidation of natural products and synthesis of certain pharmaceuticals ii) the concepts and spectral data for structural predictions	PSO1 PSO2 PSO5	К3
CO4	Analyse i) the utility of various reactions in the structural elucidation of natural products ii) the SAR of certain pharmaceuticals iii) the various influencing factors of spectroscopic techniques in determining the structure of organic compounds ii) Analyze the functional groups of organic compounds using FT-IR, ¹ H-NMR, ¹³ C-NMR techniques	PSO2 PSO3 PSO4	K4
CO5	Evaluate the structure through a complete synthesis of natural products and drugs Interpret the structure of simple organic molecules from the spectral data of FTIR, NMR and Mass	PSO5 PSO6	К5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S
				IAXONOMIY LEVEL
I	 1.1 Alkaloids: Definition, classification, isolation, purification; structural elucidation of piperine, nicotine and coniine. 1.2 Terpenoids: Definition, classification, isolation, isoprene rule, special isoprene rule; structural elucidation of geraniol, dipentene and alpha terpineol. Vitamins: Definition, classification, structural elucidation of vitamin A. 	15	CO1- CO5	K1 – K5
Π	 2.1 Carbohydrates: Definition, nomenclature, classification; Haworth and Fischer projections; structural elucidation of glucose and fructose; conversion of glucose to fructose and vice versa; mutarotation and epimerization (definition only); Kiliani synthesis (pentose to hexose) and Wohl's method (hexose to pentose); sucrose and maltose (structure and chemical properties); starch and cellulose (structure and uses only). 2.2 Organometallic therapeutic agents: Sb compounds – Tartar emetic, anthiomaline, Hg compounds – Salyrgan, Thiomersal, Au compounds – Solganal, Krysolgan. 	15	CO1- CO5	K1 – K5

III	 3.1 Analgesics - synthesis and uses of aspirin, acetaminophen - nalorphin, methadone pethidine and morphine and its SAR, Antibiotics: clinical uses of Chloramphenicol, penicillin, tetracyclines and streptomycin, SAR of chloramphenicol and penicillin, Sedatives and hypnotics - synthesis and uses of phenobarbitone, cyclobarbitone and thiobarbitone. 3.2 Antimalarials - quinine and chloroquine (synthesis and structural elucidation not required). Antileprosy drugs – Dapsones (Synthesis & Clinical uses only) 3.3 Antidiabetic agents (oral): Tolbutamide, Glibenclamide (Synthesis and clinical uses), Antithyroid drugs: methimazole&Carbimazole (Synthesis & Clinical uses only), Parkinson's disease and its treatment: Levodopa, carbidopa, amantadine (Synthesis and clinical uses). 	15	CO1- CO5	K1 – K5
IV	 4.1 FT-IR spectroscopy: Principle, modes of vibrations in molecules; factors influencing vibrational frequencies; FT-IR spectrum (functional group region & finger print region), assignment of values in terms of wave number for various bonds (alkane, alkene, alkyne & aromatic C-H, aliphatic & aromatic C=C, C≡C, alcoholic, phenolic & carboxylic acid O–H, ether C-O, organo halogen C-X, aldehyde, ketone, carboxylic acid, ester, & amide C=O, amine C-N & N-H and nitro C-N & N=O). 4.2 1H-NMR Spectroscopy: Principle, chemical shift, factors affecting chemical shift, shielding and deshielding, Features of 1H NMR spectrum and associated structural feature of organic compound – Number of signals – position of the signals – intensity of the signals – spin-spin splitting of signals, chemical shift of common type of protons. 	15	CO1- CO5	K1 – K5
V	 5.1 ¹³C-NMR Spectroscopy: Principle, proton coupled and decoupled 13C-NMR spectrum; assignment of values for various carbon atoms (alkanes, alkenes, alkynes, alkyl halides, ethers, aldehydes, ketones, carboxylic acids, esters, amines and amides). 5.2 Mass spectrometry: principle, base peak, molecular ion peak, isotope peak, metastable peak and their uses – nitrogen rule; McLafferty rearrangement; fragmentation pattern of organic compounds (2-ethylbutane, propyl chloride, tertiary butyl alcohol, acetaldehyde, acetone, ethyl amine, phenol, propionic 	15	CO1- CO5	K1 – K5

acid, ethyl acetate, propanamide), m/e of some common fragments. 5.3 Elementary combined spectral problems (carbon
containing C1 to C5 alcohol, ester and mono
substituted aromatic system).
Self-study
Chemical reactions of Glucose, Fructose, Sucrose and Maltose
• Salient features of FT-IR, ¹ H-NMR, ¹³ C-NMR spectroscopic techniques
• Uses of Mass spectrometry in structural prediction of simple molecules
• Compare various anti-diabetic drugs for better clinical uses with minimum side effects
• Enumerate various anti-thyroid drugs based on their efficacy
Textbooks
1. Organic Chemistry, Vol. 1, I. L. Finar, 6th edition, Pearson publications, 2002
2. Organic Chemistry, Volume 2: Stereochemistry and the Chemistry Natural Products, I. L. Finar, 5th edition. Pearson publications, 2002
3 A Teythook of Pharmaceutical Chemistry Panerback Ghosh Javshree 3rd Edition S Chand
publications 2010
A Synthetic Drugs Gurdeen R Chatwal 2nd Edition Himalaya Publishing House 2000
5. Medicinal Chemistry, Ashutesh Ker, 4th Edition, New Ase International But I the 2000
D _o forences
1 Operation Sciences Langue C. Words, 8th Edition, Desperan Education Ins. 2010
1. Organic chemistry, Leroy G. wade, sur Edition, Pearson Education Inc., 2019
2. Organic chemistry, Janice Gorzynski Smith, 2nd edition, Tata McGraw Hill Education Private
Limited, 2008

Course Outcomes			Pı	rogram	Outcom	ies			Program Specific Outcomes								KL
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	1	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	-	2	3	-	-	-	-	-	K2
CO 3	-	3	-	-	2	-	-	-	3	2	-	-	3	-	-	-	K3
CO 4	-	3	2	-	-	-	-	-	-	3	3	2	-	-	-	-	K4
CO 5	-	-	-	3	2	-	-	-	-	-	-	-	3	2	-	-	K5
Wt. Avg.	-	3	2	3	2	-	-	-	3	2	3	2	3	2	-	-	
Overall Mapping of the Course													PO: 2.5 PSO: 2	5 .5			

Cours	e Code												
Cre	dits	4											
Hours	/ Cycle	3											
Cate	gory	Part III	Core		Theo	Theory							
Sem	ester	VI				•							
Yea	r of	From the academic year 2023-24 onwards											
Implem	entation												
Cou Obje	ırse ctives	To comprehend the impact of pressure and temperature on phase equilibrium understand the inter-conversion of chemical and electrical energy linking thermodynamics with electrochemistry, and apply theoretical and foundational principles to electrochemical phenomeno in electrochemical guttares											
CO#		Cou		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)								
On comp	On completing the course successfully, the student will be able to												
CO1	Recall the the system	e basic principl n and electroch	es and fundamental laws of state emistry	es of	PSO1	K1							
CO2	Understa	nd and explain	n the physical behaviour of i	ions,	PSO4,	K2							
	electrode changes v	 electrolyte, with various fac 	solids, liquids and gases and tectors.	their	PSO5								
CO3	Apply the understar electrical	e knowledge of ad the behaviou and chemical of	f phase rule and electrochemistring of phases and interconversion energy	ry to on of	PSO3, PSO5	К3							
CO4	Analyze electrode solutions	various factors -electrolyte int	influencing the state of the sys erface and the behaviour of ior	tem, 1s in	PSO3, PSO4, PSO5	K4							
CO5	Use the la comprehe systems, application	aws of phase ru end and evalua electrolytes an ons	le and electrochemistry to comp te the behaviour of states of nd emf measurements for var	pare, f the rious	PSO3, PSO4, PSO5	K5							

PHASE RULE AND ELECTROCHEMISTRY

	SYLLABUS												
UNIT	CONTENT	HOURS	COs	BLOOM'S									
				TAXONOMY									
				LEVEL									
Ι	1.1Statement and explanation of the terms with	15	CO1-	K1 – K5									
	examples for phase (P), component (C) and degree		CO5										
	offreedom (F), criteria of phase equilibrium.												
	Definition and significance of Gibbs phase rule.												
	Derivation of Gibbs phase rule.												

	1.2 Derivation of Clausius-Clapeyron equation and			
	its importance to equilibria in phase transitions			
	(solid-liquid, liquid-vapour and solid-			
	vapour). Application of phase rule to one component			
	systems-water, CO2 and sulphur.			
	1.3 Reduced phase rule- Two component system: (i)			
	Simple Eutectic: Lead-Silver system (ii) Formation			
	of Compounds with Congruent melting points: Ferric			
	chloride-water system. (iii) Formation of Compounds			
	with Incongruent melting points: Sodium chloride-			
	water system.			
II	2.1 Binary solutions: Fractional distillation of binary	15	CO1-	K1 – K5
	miscible liquids (ideal and non-ideal), azeotropes,			
	lever rule.		CO5	
	2.2 Solubility of binary partially miscible liquids,			
	(CST-UCST and LCST). Phenol-water system,			
	nicotine-water system, Effect of addition of solute on			
	CST of phenol.			
	2.3 Distillation of Immiscible Liquids. Solubility of			
	gases in liquids; Henry's law and its relationship with			
	Raoult's law.			
	2.4 Nernst distribution law: Thermodynamic			
	derivation; limitation of the law, application in			
	studying association, dissociation and solvent			
	extraction. Study of formation of complex ions.			
III	3.1 Electrode potential: Single and standard electrode	15	CO1-	K1 – K5
	potentials. Reference electrodes: (i) Primary			
	reference electrode: Standard hydrogen electrode (ii)		CO5	
	Secondary reference electrode: Saturated calomel			
	electrode. Determination of standard electrode			
	potentials of zinc and copper electrodes; Calculation			
	of cell EMF from single electrode potentials;			
	Definition and applications of electromotive series.			
	3.2 Different types of electrodes: (i) Metal-Metal ion			
	electrodes (ii) Amalgam electrodes (iii) Gas			
	electrodes (1v) Metal insoluble salt electrodes (v)			
	Oxidation – reduction electrodes (definition and			
	derivation of EMF for each electrode).			
	3.5 Electromotive force Definition; Measurements			
	using potentiometer; Construction and working of			
	weston saturated and unsaturated standard cells;			
IV	4.1 Thermodynamics of electrochamical reactions:	15	001	K1 K5
1 V	Derivation of Nernst equation and its use in	13	COI-	$\mathbf{K} \mathbf{I} = \mathbf{K} \mathbf{J}$
	calculating FMF of cells at different activities of the		COS	
	individual electrodes. Relationship between FMF and			
	manyidual cicculoues. Relationship between ENT and			

	(i) free energy changes (ii) enthalpies changes (iii)			
	entropy changes occurring in electrochemical			
	reactions;			
	4.2 Classification of electrochemical cells: Chemical			
	cells and concentration cells with and without			
	transference; Definition and derivation of EMF for			
	each cell-liquid junction potential.			
	4.3 Applications of EMF: Calculation of (i) Valency			
	of ions in doubtful cases(ii) free energy, enthalpy and			
	entropy changes in electrochemical reactions,			
	(iii)solubility product of sparingly soluble salt pH			
	and its determination using hydrogen, quinhydrone			
	and glass electrodes; Potentiometric acid-base, redox			
	and precipitation titrations.			
V	5.1 Faraday's laws of electrolysis; Electrolysis of	15	CO1-	K1 – K5
	aqueous NaCl and CuSO4 solutions using the			
	corresponding metal or inert electrodes; Properties of		CO5	
	electrolytes: Colligative properties -Vant Hoff factor.			
	5.2 Electrolytic conductance: Determination -			
	variation of conductance with concentration.			
	Equivalent conductance at infinite dilution; Transport			
	numbers: Determination using Hittorf's method and			
	moving boundary method. Applications of			
	conductance measurements - determination of Ka			
	and Ksp.			
	5.3. Concepts of activities, activity coefficients and			
	ionic strength of strong electrolytes. (simple numerical			
	problems) Kohlrausch's law of independent migration			
	of ions, degree of dissociation - Oswald's dilution law			
	for weak electrolytes; Conductometric titrations.			
Selfstudy	y			
• Gibbs-E	Duhem-Margules equation, its derivation and its application	ns, Aniline-h	exane sys	stem.

• Simple eutectic: Water -Potassium iodide system, freezing mixtures.

- Applications of conductance in water quality testing (TDS)
- Commercial cells: Dry cell, lead storage, and H2-O2 fuel cells
- Arrhenius theory of electrolytic dissociation, Conductometric titrations
- Concept of electrical double layer and stability of colloids

Textbooks

 Elements of Physical Chemistry, Puri, Sharma and Pathania, 4th Edition, Vishal Publishing Co., 2013
 An Introduction to Electrochemistry, S. Glasstone, East-West edition, D. Van Nostrand Company, Incorporated, 1942

3. Elements of Physical Chemistry, S. Glasstone and D. Lewis, Palgrave Macmillan; 2ndRevised edition, 1963.

4. Fundamentals of Physical Chemistry, Maron and Lando, Collier Macmillan internat. editions, Macmillan, 1974

References

1. Physical chemistry, P.W. Atkins, 8th edition, Oxford university press, 2006

2. Physical chemistry, Keith J. Laidler and John H. Meiser, CBS Publishers, 2nd Indian edn., 2006.

B.Sc. Course Articulation Matrix

Course Outcomes			P	rogram	Outcom	ies			Program Specific Outcomes							KL	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	1
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	-	3	-	3	-	-	-	-	-	-	3	3	-	-	-	K2
CO 3	-	3	-	-	3	-	-	-	-	-	3	-	3	-	-	-	K3
CO 4	-	3	3	-	3	-	-	-	-	-	3	3	3	-	-	-	K4
CO 5	-	3	3	-	3	-	-	-	-	-	3	3	3	-	-	-	K5
Wt. Avg.	-	3	3	-	3	-	-	-	3	-	3	3	-	-	-	-	
Overall Mapping of the Course													PO: 3 PSO: 3				

ENTREPRENEURSHIP SKILL FOR CHEMIST

Cours	e Code											
Cre	edits	3										
Hours	/ Cycle	3										
Cate	egory	Part III	Elective		Theory							
Sem	ester	VI										
Yea	ar of	From the academic year 2023-24 onwards										
Implem	entation											
Co Obje	urse ctives	To underTo learnTo ident	 To understand the basics of business concept and entrepreneurship To learn the fundamentals of intellectual property rights To identify entrepreneurial opportunities that exist 									
CO#		Cour	se Outcome(s)		PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)						
On com	pleting the	course successf	ully, the student will be able to	0								
CO1	Recall th Intellectu entrepren	e fundamental co al Property (eurship	ness, and	PSO8	K1							
CO2	(i) Under business the challe Understat entrepren	stand the fundam & business plan, (enges and opportund d governmen eurship	ental concepts and principles o b) entrepreneurship, (ii) Unders inities in chemical industry and at schemes for promo	of (a) stand (iii) oting	PSO4, PSO8	K2						

CO3	Apply the fundamental concepts and principles of business, ethics and entrepreneurship	PSO8	К3
CO4	Analyse and Comprehend the fundamental concepts and principles of business, the misconception in IP, role of chemical industries in India, entrepreneurship skill and the case studies	PSO8	K4
CO5	Compare and evaluate (i) the business environment, challenges opportunities in entrepreneurship in general and chemical industries in specific and (ii) schemes for innovation and entrepreneurship	PSO8	K5

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	Business Basics Introduction, nature of business, understanding the business environment, business ethics, forms of business ownership, key business concepts: Business plans, market need, project management and routes to market	9	CO1- CO5	K1 – K5
II	Chemistry in Industry Current challenges and opportunities for the chemistry-using industries – supply of raw materials, energy, climate change, waste management and environmental impact, role of chemistry in India and global economies; Drivers of innovation.	9	CO1- CO5	K1 – K5
III	Intellectual Property Rights Intellectual Property – fundamentals, concepts, importance of IP, Types of Intellectual property – Trademarks, Copyrights, Patents and trade secrets – Definition, protectable, duration of protection, ten most common misconception in IP, IP Intellectual Property Protection (IPR); Different international agreements – WTO and Paris convention.	9	CO1- CO5	K1 – K5
IV	Entrepreneurship Enterprise, Entrepreneur and Entrepreneurship - Definition; types of entrepreneurship and enterprises; concept of entrepreneurship, attributes, roles and responsibilities of an entrepreneur, advantages, key entrepreneurial skills; Case studies (Alternative Chemistry Careers: Mark D. Frishberg, Eastman Kodak/Eastman Chemical Company, Patent Assets	9	CO1- CO5	K1 – K5

	for High Technology Commercial Innovation - James												
V	Entrepreneurship Challenges and Opportunities9CO1-K1 –Globalchallengesandcooperation's;9CO1-K1 –												
	Global challenges and cooperation's;												
	Entrepreneurship and Environment; Women as		CO5										
	Entrepreneurs, Sources of assistance - government and												
	other schemes and programmes on start-up and												
	entrepreneursnip- Promoting Innovations in												
	Sustainable Finance Scheme Small Industries												
	Development Bank of India (SIDBI) Small Business												
	Innovation Research Initiative (SBIRI). Trade Related												
	Entrepreneurship Assistance and Development												
	(TREAD) Scheme for Women, Department for												
	Promotion of Industry and Internal Trade (DPIIT)												
	Recognition.												
Textboo	Textbooks												
1 1. H. N	I. Cheng, Sadiq Shah, Marinda Li Wu - Vision 2025_ Ho	ow To Succe	eed in the	e Global									
Chemist	ry Enterprise- Chapter 8 (ACS Symposium Series 1157)	American (Chemical	Society (2014).									
2. A. K.	Yetisen, L. R. Volpatti, A. F. Coskun, S. Cho, E. Kamrar	ni, H. Butt, A	A. Khade	emhosseini and S.									
H. Yun,	Entrepreneurship, Lab Chip, 2015, 15, 3638. (DOI: 10.1)	039/C5LC0	0577A).										
3. Chemi	istry - Developing Solutions in a Changing World; The En	uropean Ass	sociation	for Chemical and									
Molecula	ar Sciences (EuCheMS): Brussels, Belgium, 2011.												
Referen	ces												
I. The O	xford Handbook of Creativity, Innovation, and Entrepred	neurship Ed	ited by C	Christina E.									
Shalley,	Michael A. Hitt, and Jing Zhou, Oxford University Press	s, 2005.											
2. W.R.	Cornish, Intellectual Property, Sweet & Maxwell, Londo	on, 2000.											
Suggest	ed Reading	n I : Vanh	aa) Wila										
1. Chem	Istry Entrepreneursmp Edited by (Garcia-Martinez, Javie	er, Li, Kunn	ao), wiie	ey, 2022									
1 https://	Kesources (accessed on 28 June 2022)	kille for che	mista/40	12886 article									
1. https://edu.isc.org/lesources/tutor-course-resources-busiless-skills-for-chemists/4012880.article													
2. https://pubs.acs.org/ubi/10.1021/acs.htbrgchefil.1005200													
4 https://inindia.gov.in/resources.htm													
5 https://www.startupindia.gov.in/content/sih/en/government_schemes.html													
6 https:/	6 https://openstax.org/books/entrepreneurshin/pages/A_2_creativity_innovation_and_invention_bow_												
o. https://	/opensiax.org/books/entrepreneurship/pages/4-2-creativi	ity-iiiiovatio	m-and-fr	ivention-now-									
iney-o	liller												

	B.Sc. Course Articulation Matrix																
Course			Pro	gram Ou	tcomes					Program Specific Outcomes							KL
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	3	K1
CO 2	-	-	2	-	-	-	3	-	-	-	-	2	-	-	-	3	K2
CO 3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	3	K3
CO 4	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	3	K4
CO 5	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	3	K5
Wt. Avg.	-	-	2	-	-	-	3	-	-	-	-	2	-	-	-	3	
	Overall Mapping of the Course PO: 2.													PO: 2.5			
															PSO: 2.5		

ADVANCED CHEMISTRY

Cours	e Code	EC05												
Cre	edits	3												
Hours / Cycle		3												
Category		Part	Elective	Theory										
		NA												
Sem	ester	VI	VI											
Yea	ar of	From the aca	ademic year 2023-24 onwards	5										
Implem	entation													
Course Objectives		 To expose the students to advanced level concepts to enhance their competency skills To gain insight on some advanced organic rearrangements and name reactions and understand the basics of pericyclic reaction through FMO approach To gain knowledge on the electronic spectra of the inorganic complexes, reaction mechanism and kinetics of the complexes, IR spectroscopic tool to study metal carbonyls and few more metalloenzymes. To learn group theory and to solve numerical problems in basic concepts in physical chemistry. 												
CO#				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)									
On com	pleting the	e course succes	sfully, the student will be abl	e to										
CO1	Recall the fundamentals of organic, inorganic and physical PSO1 K1 chemistry													
CO2	Explain (i) nature of reactive intermediates in organic reactions, rearrangement reactions, pericyclic reactions and optical isomerism in specific organic compounds (ii) Electronic spectra and reactions of coordination compounds, nature of organometallic compounds and metallo enzymes (iii) The basic principles of group theory, quantum mechanics, Chemical kinetics, Chemical equilibrium, Classical thermodynamics, electrochemistry and photochemistryPSO2, PSO4, PSO4,K2													

CO3	Identify (i) the formation and stability of reactive intermediates (ii) mechanism of rearrangement and pericyclic reactions (iii) stereochemistry of compounds with chiral axis (iv) possible	PSO2, PSO3	К3
	electronic spectra and reactions of complexes (v) types of bonding		
	in organometallics and metallo enzymes.		
	Solve numerical problems in basic concepts of physical chemistry		
CO4	Analyze the (i) structure & stability of reactive intermediates (ii)	PSO3,	K4
	mechanism of rearrangement and pericyclic reactions (iii)	PSO4	
	stereochemistry of compounds with chiral axis (iv) possible		
	electronic spectra and reactions of complexes (v) types of bonding		
	in organometallics and metallo enzymes (vi) relation between		
	various physical quantities.		
CO5	Analyse and interpret data to identify patterns, trends and	PSO3,	K5
	relationships and to synthesize knowledge from multiple sources.	PSO4	

	SYLLABUS			
UNIT	CONTENT	HOURS	COs	BLOOM'S TAXONOMY LEVEL
Ι	 1.1 Reactive intermediates in organic synthesis: Carbocations, carbanions, free radicals, carbenes, arynes, and nitrenes.Generation, detection, stability and reactivity. 1.2 Molecular rearrangement:Favorskii, benzilic acid and dienone-phenol. 	9	CO1 - CO5	K1 – K5
П	 2.1 Optical isomerism: due to chiral axis - allenes, biphenyls and spiranes with appropriate substituent – R & S notations; due to chiral plane in hexahelicene and transcyclooctene 2.2 Pericyclic reaction: Electrocyclic reaction (butadiene-cyclobutene system), cyclo-addition (2+ 2 and 4+2 systems) and sigmatropic reaction – [1,2], [1,3] and cope (definition, example, FMO treatment only) 2.3 Name reactions: Simmons-Smith, Robinson annulation, Darzens, and McMurry 	9	CO1 CO5	K1 – K5
III	 3.1 Electronic spectra of inorganic complexes: Ground state term symbols for dⁿ configurations and their splitting in excited state (elementary treatment only), Orgel diagram and assignment of electronic transitions in complexes; Racah parameters, nephlaxeutic effect and calculation of B value. 3.2 Kinetics and mechanism of substitution reactions in octahedral complexes: Acid hydrolysis, base hydrolysis, water replacement reaction, SN1CB. 3.3 Substitution reactions in square planar complexes: Trans effect, trans effect series and theories of trans effect 	9	CO1 - CO5	K1 – K5

IV	 4.1 Organometallic chemistry: 18 electron rule and calculation of M-M bond, IR spectroscopy as a tool to understand the backbonding in carbonyl complexes – effect of other ligands on backbonding in carbonyls. 4.2 Metallo enzymes: Redox and non-redox enzymes – definition, types and examples; Structure and functions of carboxy peptidase, carbonic anhydrase, xanthine oxidase and superoxide dismutase 	9	CO1 - CO5	K1 – K5							
V	 5.1 Advanced topics in physical chemistry 5.1 Group Theory: Symmetry and group theory - symmetry elements and symmetry operations - point groups - simple examples. 5.2 Quantum mechanics: Eigen function and Eigen values (problems) - quantum mechanical operators - Angular momentum, kinetic energy and potential energy (derivations only) 5.3 Numerical problems on Chemical kinetics (first, second and third order reactions), Chemical equilibrium, Classical thermodynamics (first and second law only) electrochemistry (specific and equivalent conductance, ionic strength, activity and mean ionic activity coefficient), photochemistry (quantum yield, lambert-Beer's law) 	9	CO1 CO5	K1 – K5							
Textbo 1. Man 7th 2. Adv	 Textbooks 1. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, 7th Edition, 2015, Wiley Publications. 2. Advanced Organic Chemistry, Organic Reaction Mechanisms, V.K.Aluwalia& R.K. Parashar, 										
200 3. Ster	2, Narosa Publishing House, New Delhi, India eochemistry Conformation and Mechanism, P.S. Kalsi, 7th Edit	tion, 2012,	New ag	ge							
Inte	rnational Publishers, New Delhi India		Koitor	DI Kaitan							
and	O.K. Medhi, 4th Edition, Pearson Publication, New Delhi, 2014	сеу, Ľ.А. 4.	Kenter,								
5. Syn	5. Symmetry and spectroscopy of molecules, K, Veera Reddy, New Age International (P) Ltd, Second edition (April 15, 2009)										
 6. Principles of Physical Chemistry B.R. Puri, L. R. Sharma and M. S Pathania, Vishal Publishing Co.; 47th edition edition (2017) 											
Refere	nces anic Chamistry, Ionathan Claydan, Nick Greaves and Styert We	mon Ind	Edition	2018							
Org	ord University Press, India.	uitii, 2110 I	Lanuoil,	2010,							
2. Inor Nev	ganic Chemistry, G.L. Meissler and D.A. Taarr, 3rd Edition, Pe v Delhi, 2009.	arson Edu	cation in	n South Asia	•						

Chemical applications of group theory, F.A. Cotton, 3rd Edition, Wiley India Publication, 2008.
 Physical Chemistry – A molecular approach, D.A. McQuarrie, University Science books, 2011.

Course Outcomes			P	rogram	Outcom	ies			Program Specific Outcomes								KL
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	K1
CO 2	-	3	2	-	-	-	-	-	2	3	2	-	-	-	-	-	K2
CO 3	-	3	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K3
CO 4	-	3	3	-	-	-	-	-	-	3	3	3	-	-	-	-	K4
CO 5	-	3	2	-	-	-	-	-	-	3	3	3	-	-	-	-	K5
Wt. Avg.	-	3	2.5	-	-	-	-	-	2.5	3	2.75	3	-	-	-	-	
Overall Mapping of the Course												PO: 2.7 PSO: 2	75 .81				

PROJECT BASED LEARNING

Course Code									
Credits		32							
Hours / Cycle		2							
Cate	gory	Part IV	Elective		Theory				
Sem	ester	VI							
Yea	r of	From the aca	demic year 2023-24 onwards						
Implem	entation								
Coı Obje	ırse ctives	 To construct knowledge on their own through facilitation by mentors To acquire 21st century skills such as critical, creative thinking, collaboration and communication as well as bench skills To gain skills in generating and interpreting data through designing experiments To impart critical reading and scientific writing skills through reading chemical 							
CO#				PSO Addressed	Bloom's Taxonomy Levels (K1 to K5)				
On comj	pleting the	e course succes	sfully, the student will be able	e to					
CO1	Recall t	he fundament	and physical	PSO1	K1				
CO2	Use dom interpret	ain specific te data	analyze and	PSO1 & PSO3	K2				
CO3	Apply the	e basic concept	s to explain the research findin	gs	PSO3	K3			
CO4	Critically research report in	v analyze litera problem and p written and ver	PSO5 & PSO8	K4					
CO5	Generate validate t	hypothesis, c he hypothesis.	lesign and carry out the exp	periments to	PSO7 & PSO8	K5			

Course content

- It is a skill development course
- Students will be undertaking any 4 group micro projects, each of 3 cycles long.
- The students will be carrying out the micro projects in groups
- The students will read Chemical education research articles and synthesize information, draft mini research proposal for micro project including hypothesis and design experiments based on the themes provided:

Broad domains for Micro research projects

- 1. Designing Green synthetic protocol for organic / inorganic compounds and materials
- 2. Designing protocol /SOP for Complex preparation, qualitative and quantitative analyses
- 3. Determination of nutrient in the food samples
- 4. Computational chemistry: Writing algorithms for predicting the outcome of chemical reactions
- 5. Extraction of compounds from natural sources by optimizing parameters
- 6. Computing physical parameters and constructing isotherms: Chemical kinetics, adsorption and catalysis studies
- 7. Developing novel materials for sensing

Evaluation

The outcome of the course will be evaluated through the submission of project report based on the following rubric:

Statement of hypothesis (5), designing/optimizing methodology (5) through critical and creative thinking, peer collaboration (5) and Scientific writing (10) (Title, abstract, keywords, introduction, methodology, results and discussion and conclusion)

References

- Chemistry Education Research and Practice <u>https://www.rsc.org/journals-books-databases/about-journals/chemistry-education-research-practice/</u>
- Journal pf Chemical Education, American Chemical Society, https://pubs.acs.org/journal/jceda8
- Education in Chemistry, Royal Society of Chemistry, https://eic.rsc.org/
- African Journal of Chemical Education, <u>https://www.ajol.info/index.php/ajce</u>
- The Chemical Educator, <u>http://chemeducator.org/</u>
- Chemistry Teacher International, <u>https://www.degruyter.com/view/j/cti</u>

Course Outcomes	Program Outcomes									Program Specific Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO 1	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	K1
CO 2	-	3	-	-	-	-	-	-	3	-	3	-	-	-	-	-	K2
CO 3	-	3	-	-	-	-	-	-	-	-	3	-	-	-	-	-	K3
CO 4	-	-	-	-	3	-	-	2	-	-	-	-	3	-	-	2	K4
CO 5	-	-	-	-	3	-	-	2	-	-	-	-	-	-	2	3	K5
Wt. Avg.	-	3	-	-	3	-	-	2	3	-	3	-	3	-	2	2.5	
Overall Mapping of the Course												PO: 2.6 PSO: 2	57 .7				